• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

光学分子影像技术在疾病诊疗和药物研究中的应用

董雪, 顾月清

董雪, 顾月清. 光学分子影像技术在疾病诊疗和药物研究中的应用[J]. 中国药科大学学报, 2014, 45(2): 145-152. DOI: 10.11665/j.issn.1000-5048.20140203
引用本文: 董雪, 顾月清. 光学分子影像技术在疾病诊疗和药物研究中的应用[J]. 中国药科大学学报, 2014, 45(2): 145-152. DOI: 10.11665/j.issn.1000-5048.20140203
DONG Xue, GU Yueqing. Application of optical molecular imaging technology in the diagnosis and treatment of diseases[J]. Journal of China Pharmaceutical University, 2014, 45(2): 145-152. DOI: 10.11665/j.issn.1000-5048.20140203
Citation: DONG Xue, GU Yueqing. Application of optical molecular imaging technology in the diagnosis and treatment of diseases[J]. Journal of China Pharmaceutical University, 2014, 45(2): 145-152. DOI: 10.11665/j.issn.1000-5048.20140203

光学分子影像技术在疾病诊疗和药物研究中的应用

基金项目: 国家自然科学基金重大国际(地区)合作研究资助项目(No.81220108012)

Application of optical molecular imaging technology in the diagnosis and treatment of diseases

  • 摘要: 光学分子影像学技术是发展迅速的生物医学影像技术之一,利用各种光学分子探针及成像技术、纳米技术等,对体内外细胞、组织、生物体等进行无创、实时、定位监测分子过程,以实现定性或定量动态研究。该技术灵敏度高、特异性强,尤其适用于小动物活体检测,为疾病诊断、新药临床前研究和新药开发提供有力的体内实时监测技术。本文综述了光学分子影像学的发展现状及荧光探针和纳米材料等在疾病诊断治疗、药物作用机制、肿瘤生物学等研究中的应用。
    Abstract: Optical molecular imaging(OMI)is one of the rapidly developing biomedical imaging technique employing different technologies, such as optical molecular probing, imaging and nanotechnology to monitor a local real-time non-invasive qualitative or quantitative dynamic studies both in vivo and in vitro. OMT′s advantages, i. e. high sensitivity and specificity, especially in vivo studies, make it suitable for diagnosis, drug tracking in preclinical research and development of new drugs. Thus, it is regarded as a powerful real-time in vivo monitor. This paper discusses the latest advances in the use of fluorescent probes and nanomaterials in optical molecular imaging and its application in the diagnosis and treatment of diseases and in the studies of pharmacology and tumor biology.
  • [1] Rudin M,Weissleder R.Molecular imaging in drug discovery and development[J].Nat Rew Drug Discov,2003(2):123-131.
    [2] Weissleder R,Pittet M J.Imaging in the era of molecular oncology[J].Nature,2008,452(7 187):580-589.
    [3] Weissleder R.Molecular imaging in cancer[J].Science,2006,312(3):1 168-1 171.
    [4] Achilefu S.Introduction to concepts and strategies for molecular imaging[J].Chem Rev,2010,110(5):2 575-2 578.
    [5] Beuthan J,Mahnke C,Netz U,et al.Optical molecular imaging:overview and technological aspects[J].Laser Appl Med,2002,17(1):25-30.
    [6] Fei XN,Gu YC.Progress in modifications and applications of fluorescent dye probe[J].Prog Nat Sci,2009,19(1):1-7.
    [7] Nishimura Y,Yata K,Nomoto T,et al.Identification of a novel indoline derivative for in vivo fluorescent imaging of blood-brain barrier disruption in animal models[J].ACS Chem Neurosci,2013,4(8):1 183-1 193.
    [8] Cao J, Wan SN, Tian JM, et al. Fast clearing RGD-based near-infrared fluorescent probes for in vivo tumor diagnosis[J].Contrast Media Mol Imaging,2012,7(4):390-402.
    [9] Guo J,Du CL,Shan LL,et al.Comparison of near-infrared fluorescent deoxyglucose probes with different dyes for tumor diagnosis in vivo[J].Contrast Media Mol Imaging,2012,7(3):289-301.
    [10] Ag D,Bongartz R,Dogan LE,et al.Biofunctional quantum dots as fluorescence probe for cell-specific targeting[J].Colloids Surf B Biointerfaces,2014,114:96-103.
    [11] Nurunnabi M,Cho KJ,Choi JS,et al.Targeted near-IR QDs-loaded micelles for cancer therapy and imaging[J].Biomaterials,2010,31(20):5 436-5 444.
    [12] Cassette E,Helle M,Bezdetnaya L,et al.Design of new quantum dot materials for deep tissue infrared imaging[J].Adv Drug Deliv Rev,2013,65(5):719-731.
    [13] Dong W,Guo L,Wang M,et al.CdTe QDs-based prostate-specific antigen probe for human prostate cancer cell imaging[J].J Lumin,2009,129(9):926-930.
    [14] Liu Y,Chen M,Cao TY,et al.A cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury[J].J Am Chem Soc,2013,135(26):9 869-9 876.
    [15] He L,Feng LZ,Cheng L,et al.Multilayer dual-polymer-coated upconversion nanoparticles for multmodel imaging and serum-enhanced gene delivery[J].ACS App Mater Interfaces,2013,5(9):10 381-10 388.
    [16] Peng C, Zheng LF, Chen Q, et al. PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography[J].Biomaterials,2012,33(4):1 107-1 119.
    [17] Larson N,Gormley A,Frazier N,et al.Synergistic enhancement of cance therapy using a combination of heat shock protein targeted HPMA copolymer-drug conjugates and gold nanorod induced hyperthermia[J].J Controlled Release,2013,170(1):41-50.
    [18] Xue JP,Shan LL,Chen HY,et al.Visual detection of STAT5B gene expression in living cell using the hairpin DNA modified gold[J].Biosens Bioelectron,2013,41(3):71-77.
    [19] Wang YP,Wang JR,Dai WL.Use of GFP to trace the colonization of Lactococcus lactis WH-C1 in the gastrointestinal tract of mice[J].J Microbiol Methods,2011,86(3):390-392.
    [20] Aboubaker MH,Sabrie J,Huet M,et al.Establishment of stable GFP-tagged Vibrio aestuarianus strains for the analysis of bacteria infection dynamics in the Pacific oyster,Crassostrea gigas[J].Vet Microbiol,2013,164(3/4):392-398.
    [21] Wang LN,Su WJ,Liu Z,et al.CD44 antibody-targeted liposomal nanoparticles for molecular imaging and therapy of hepatocellular carcinoma[J].Biomaterials,2012,33(20):5 107-5 114.
    [22] Sturgeon C.Practice guidelines for tumor marker use in the clinic[J].Clin Chem,2002,48(8):1 151-1 159.
    [23] Li XY,Wang RY,Zhang XL.Electrochemiluminescence immunoassay at nanoporous gold leaf electrode and using CdTe quantum dots as labels[J].Microchim Acta,2011,172(2):285-290.
    [24] Wang GJ,Qing Y,Shan JL,et al.Cation-exchange antibody labeling for simultaneous electrochemical detection of tumor markers CA15-3 and CA19-9[J].Microchim Acta,2013,180(4):651-657.
    [25] Singh N,Charan S,Sanjiv K,et al.Synthesis of tunable and multi-functional Ni-doped near-infrared QDs for cancer cell targeting and cellular sortin.[J].Bioconjug Chem,2012,23(3):421-430.
    [26] Chien YH,Chou YL,Wang SW,et al.Near-infrared light photocontrolled targeting,bioimaging and chemotherapy with caged upconversion nanoparticles in vitro and in vivo[J].ACS Nano,2013,7(10):8 516-8 528.
    [27] Liu K,Liu XM,Zeng QH,et al.Covalently assembled NIR nanoplatform for simultaneous fluorescence imaging and photodynamic therapy of cancer cell[J].ACS Nano,2012,6(5):4 054-4 062.
    [28] Cui SS,Yin DY,Chen YQ,et al.In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct[J].ACS Nano,2013,7(1):676-688.
    [29] Shan LL,Xue JP,Guo J,et al.Improved targeting of ligand-modified adenovirus as a new near infrared fluorescence tumor imaging probe[J].Bioconjug Chem,2011,22(4):567-581.
    [30] Torkzadeh-Mahani M, Ataei F, Nikkhah M, et al. Design and development of a whole cell luminescent biodensor for detection of early-stage apoptosis[J].Bios Bioelectron,2012,38(1):362-368.
    [31] Boeneman K,Mei BC,Dennis AM,et al.Sensing caspase-3 activity with quantum dot-fluorescent protein assemblies[J].J Am Chem Soc,2009,131(11):3 828-3 829.
    [32] Li CY,Zhang YJ,Wang M,et al.In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR -Ⅱ window[J].Biomaterials,2014,35(1):393-400.
    [33] Terada N,Saitoh Y,Saitoh S,et al.Visualization of microvascular blood flow in mouse kidney and spleen by quantum dot injection with “in vivo cryotechnique”[J].Microvasc Res,2010,80(3):491-498.
    [34] Femke H, Eric LK, Karolien C, et al. A transgenic Tie2-GFP Mathymic mouse model;a tool for vascular biology in xenograft tumors[J].Biochem Biophys Res Commun,2008,368(2):364-367.
    [35] Suetsugu A,Honma K,Saji S,et al.Imaging exosome transfer from breast cancer cells to stroma at metastatic sites in orthotopic nude-mouse models[J].Adv Drug Deliv Rev,2013,65(3):383-390.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 刊出日期:  2014-04-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭