• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

透明质酸-葡聚糖超分子水凝胶的制备及其细胞包载性能研究

曹璐娟, 施瑜, 陈荆晓, 陈敬华

曹璐娟, 施瑜, 陈荆晓, 陈敬华. 透明质酸-葡聚糖超分子水凝胶的制备及其细胞包载性能研究[J]. 中国药科大学学报, 2014, 45(3): 307-313. DOI: 10.11665/j.issn.1000-5048.20140310
引用本文: 曹璐娟, 施瑜, 陈荆晓, 陈敬华. 透明质酸-葡聚糖超分子水凝胶的制备及其细胞包载性能研究[J]. 中国药科大学学报, 2014, 45(3): 307-313. DOI: 10.11665/j.issn.1000-5048.20140310
CAO Lujuan, SHI Yu, CHEN Jingxiao, CHEN Jinghua. Preparation of HA-Dex supramolecular hydrogel for cell encapsulation[J]. Journal of China Pharmaceutical University, 2014, 45(3): 307-313. DOI: 10.11665/j.issn.1000-5048.20140310
Citation: CAO Lujuan, SHI Yu, CHEN Jingxiao, CHEN Jinghua. Preparation of HA-Dex supramolecular hydrogel for cell encapsulation[J]. Journal of China Pharmaceutical University, 2014, 45(3): 307-313. DOI: 10.11665/j.issn.1000-5048.20140310

透明质酸-葡聚糖超分子水凝胶的制备及其细胞包载性能研究

基金项目: 教育部博士点基金资助项目(No.20110093110008);江苏省自然科学基金资助项目(No.BK2012557);武汉大学生物医用高分子材料教育部重点实验室开放基金资助项目(No.20110401)

Preparation of HA-Dex supramolecular hydrogel for cell encapsulation

  • 摘要: 分别制备了经β-环糊精(β-CD)修饰的透明质酸主体大分子(HA-CD),用2-萘乙酸(2-NAA)修饰的葡聚糖客体大分子(Dex-NAA),其结构均经核磁共振氢谱进行确认,接枝率分别为15.53%和7.38%。利用β-环糊精和2-萘乙酸间的主客体识别作用,制备得到超分子水凝胶。扫描电镜观测表明水凝胶内部为多孔结构,并且排列规整;水凝胶经流变学测试其储存模量大于损耗模量,具有较好的机械强度;同时,水凝胶具有良好的细胞相容性,可有效包裹细胞并促进细胞增殖生长。这种由天然多糖构建的超分子水凝胶有望作为细胞支架应用于组织工程领域。
    Abstract: In this study, hyaluronic acid/β-cyclodextrin conjugate(HA-CD)and dextrin/2-naphthylacetic acid conjugate(Dex-NAA)were prepared, respectively. Their chemical structures were confirmed by 1H NMR, the degrees of substitution(DS)of HA-CD and Dex-NAA were determined to be 15. 53% and 7. 38%, respectively. A supramolecular hydrogel was subsequently prepared by the host-guest interaction between β-CD and 2-NAA based on these two gelators. Based on scanning electron microscopy(SEM)observation illustrated that the hydrogel had regularly porous architecture. Rheological analysis exhibited that the storage modulus of the hydrogel was higher than the loss modulus, indicating good mechanical strength. Meanwhile, the hydrogel showed favorable biocompatibility and could, therefore, encapsulate cells in situ, leading to promotion of cell proliferation and growth. This natural polysaccharide-based supramolecular hydrogel is promising in the application of tissue engineering as cell scaffold.
  • [1] Ren J, Zhu J. Recent Development of fabrication technology of biodegradable porous scaffold for tissue engineering[J].J Tongji Univ(同济大学学报),2005,33(12):1 664-1 676.
    [2] Zhang X.Applications of tissue-engineered cartilage and scaffold constructed using different materials[J].J Tissue Eng Res(中国组织工程研究),2012,16(8):1 491-1 495.
    [3] Wang T,Jiang XJ.Intelligent hydrogel in in situ myocardial tissue engineer[J].Adv Caediovasc Dis(心血管病学进展),2008,29(5):683-685.
    [4] Yu YT.Bio-medical Materials(生物医用材料)[M].Tian Jin:Tianjin University Press,2003:243.
    [5] Gutowska A,Jeong B,Jasionowski M.Injectable gels for tissue engineering[J].Anat Rec,2001,263(4):342-349.
    [6] Hoffman AS.Hydrogels for biomedical applications[J].Adv Drug Deliver Rev,2002,54(1):3-12.
    [7] Bulpitt P,Aeschlimann D.New strategy for chemical modification of hyaluronic acid:preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels[J].J Biomed Mater Res A,1999,47(2):152-169.
    [8] Oh EJ,Park K,Kim KS,et al.Target specific and long-acting delivery of protein,peptide,and nucleotide therapeutics using hyaluronic acid derivatives[J].J Control Release,2010,141(1):2-12.
    [9] Luo Y,Kobler JB,Heaton JT,et al.Injectable hyaluronic acid-dextran hydrogels and effects of implantation in ferret vocal fold[J].J Biomed Mater Res B,2010,93(2):386-393.
    [10] Pescosolido L,Schuurman W,Malda J,et al.Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting[J].Biomacromolecules,2011,12(5):1 831-1 838.
    [11] Jin R,Teixeira LS,Dijkstra PJ,et al.Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran-hyaluronic acid conjugates for cartilage tissue engineering[J].Biomaterials,2010,31(11):3 103-3 113.
    [12] Wennink JH,Niederer K,Bochynska AI,et al.Injectable hydrogels by enzymatic co-crosslinking of dextran and hyaluronic acid tyramine conjugates[J].Macromol Symp,2011,309/310(1):213-221.
    [13] DeForest CA,Polizzotti BD,Anseth KS.Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments[J].Nat Mater,2009,8(8):659-664.
    [14] Chiu YL,Chen SC,Su CJ,et al.pH-triggered injectable hydrogels prepared from aqueous N-Palmitoyl chitosan:in vitro characteristics and in vivo biocompatibility[J].Biomaterials,2009,30(28):4 877-4 888.
    [15] Ma D,Zhang LM.Supramolecular gelation of a polymeric prodrug for its encapsulation and sustained release[J].Biomacromolecules,2011,12(9):3 124-3 130.
    [16] Wang Q,Jamal S,Detamore MS,et al.PLGA-chitosan/PLGA-alginate nanoparticle blends as biodegradable colloidal gels for seeding human umbilical cord mesenchymal stem cells[J].J Biomed Mater Res A,2011,96(3):520-527.
    [17] Yang JY,Balasundaram G,Lo SL,et al.Microfibers fabricated by non-covalent assembly of peptide and DNA for viral vector encapsulation and cancer therapy[J].Adv Mater,2012,24(24):3 280-3 284.
    [18] Dong S,Luo Y,Yan X,et al.A dual-responsive supramolecular polymer gel formed by crown ether based molecular recognition[J].Angew Chem Int Edit,2011,50(8):1 905-1 909.
    [19] Charlot A, Auzly-Velty R. Synthesis of novel supramolecular assemblies based on hyaluronic acid derivatives bearing bivalent β-cyclodextrin and adamantine moieties[J].Macromolecules,2007,40(4):1 147-1 158.
    [20] Neralagatta M,Sangeetha.Supramolecular gels:functions and uses[J].Chem Soc Rev,2005,34(10):821-836.
    [21] Quan CY,Chen JX,Wang HY,et al.Core-shell nanosized assemblies mediated by the cyclodextrin dimer with a tumor-triggered targeting property[J].ACS Nano,2010,4(7):4 211-4 219.
    [22] Benesi HA,Hildebrand JH.A spectrometric investigation of the interaction of iodine with aromatic hydrocarbons[J].J Am Chem Soc,1949,71(8):2 703-2 707.
    [23] Xu XD,Liang L,Han C,et al.Construction of therapeutic glycopeptide hydrogel as a new substitute for antiproliferative drugs to inhibit postoperative scarring formation[J].J Math Chem,2012,22(35):18 164-18 171.
    [24] Park KM,Yang JA,Jung H,et al.In situ supramolecular assembly and modular modification of hyaluronic acid hydrogels for 3D cellular engineering[J].ACS Nano,2012,6(4):2 960-2 968.
    [25] Mahler A,Reches M,Rechter M,et al.Rigid,self-assembled hydrogel composed of a modified aromatic dipeptide[J].Adv Mater,2006,18(11):1 365-1 370.
    [26] Yang B,Zhang YL,Zhang XH,et al.Facilely prepared inexpensive and biocompatible self-healing hydrogel:a new injectable cell therapy carrier[J].Polym Chem,2012,3(12):3 235-3 238.
    [27] Jayawarna V,Richardson SM,Hirst AR,et al.Introducing chemical functionality in Fmoc-peptide gels for cell culture[J].Acta Biomater,2009,5(3):934-943.
    [28] Liang L,Xu XD,Chen CS,et al.Evaluation of the biocompatibility of novel peptide hydrogel in rabbit eye[J].J Biomed Mater Res B,2010,93(2):324-332.
计量
  • 文章访问数:  1211
  • HTML全文浏览量:  7
  • PDF下载量:  2404
  • 被引次数: 0
出版历程
  • 刊出日期:  2014-06-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭