• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

基于遗传算法寻找抗HBV活性分子的关键分子指纹片断

刘恒平, 王锦政, 高成哲, 徐斌, 李清然, 林新昊, 林克江

刘恒平, 王锦政, 高成哲, 徐斌, 李清然, 林新昊, 林克江. 基于遗传算法寻找抗HBV活性分子的关键分子指纹片断[J]. 中国药科大学学报, 2014, 45(4): 405-409. DOI: 10.11665/j.issn.1000-5048.20140404
引用本文: 刘恒平, 王锦政, 高成哲, 徐斌, 李清然, 林新昊, 林克江. 基于遗传算法寻找抗HBV活性分子的关键分子指纹片断[J]. 中国药科大学学报, 2014, 45(4): 405-409. DOI: 10.11665/j.issn.1000-5048.20140404
LIU Hengping, WANG Jinzheng, GAO Chengzhe, XU Bin, LI Qingran, LIN Xinhao, LIN Kejiang. Key fingerprint fragments of anti-hepatitis B virus agents using genetic function approximation method[J]. Journal of China Pharmaceutical University, 2014, 45(4): 405-409. DOI: 10.11665/j.issn.1000-5048.20140404
Citation: LIU Hengping, WANG Jinzheng, GAO Chengzhe, XU Bin, LI Qingran, LIN Xinhao, LIN Kejiang. Key fingerprint fragments of anti-hepatitis B virus agents using genetic function approximation method[J]. Journal of China Pharmaceutical University, 2014, 45(4): 405-409. DOI: 10.11665/j.issn.1000-5048.20140404

基于遗传算法寻找抗HBV活性分子的关键分子指纹片断

Key fingerprint fragments of anti-hepatitis B virus agents using genetic function approximation method

  • 摘要: 通过活性HBV DNA聚合酶抑制剂,采用二维定量构效关系方法寻找与活性关系相关的关键分子特征。模型采用遗传逼进算法,寻找关键的分子指纹片断,所得方程调整r2为0.911 9、预测r2为0.848 9。所获得的8个分子指纹片断药效特征与药效团模型相一致。这些分子指纹片断相较于片断库或随机片断更具有针对性,通过这些片断组装的分子库将极大地提高虚拟筛选和全新药物设计的效力。
    Abstract: In this paper quantitative structure-activity relationships(QSAR)were developed on HBV DNA polymerase inhibitors to uncover the relationship between biological activity and the key structural features. The 2D QSAR model of fingerprint fragments was built using genetic function approximation(GFA)method with good internal(adjusted R-squared: 0. 911 9)and external prediction(r2pred = 0. 848 9). The features of 8 fingerprint fragments obtained are consistent with 3D pharmacophore. These fingerprints are notably more effective than those based on a fragment dictionary or hashing library. The combination of these fingerprint fragments to novel molecule library provides an effective and efficient approach to virtual screening and de novo drug design.
  • [1] WHO. Hepatitis B[EB/OL]. 2013 [201307] http: //www.who.int/mediacentre/factsheets/fs204/en/.
    [2] Malik AH,Lee WM.Chronic hepatitis B virus infection:treatment strategies for the next millennium[J].Ann Intern Med,2000,132(9):723-731.
    [3] Zoulim F,Poynard T,Degos F,et al.A prospective study of the evolution of lamivudine resistance mutations in patients with chronic hepatitis B treated with lamivudine[J].J Viral Hepat,2006,13(4):278-288.
    [4] Yang HJ,Lee JH,Kim YJ,et al.Antiviral efficacy of combination therapy with entecavir and adefovir for entecavir/lamivudine-resistant hepatitis B virus with or without adefovir resistance[J].J Med Virol,2012,84(3):424-430.
    [5] Litwin S,Toll E,Jilbert AR,et al.The competing roles of virus replication and hepatocyte death rates in the emergence of drug-resistant mutants:theoretical considerations[J].J Clin Virol,2005,34(Suppl 1):S96-S107.
    [6] Davis BJ, Erlanson DA. Learning from our mistakes: the ′unknown knowns′ in fragment screening[J].Bioorg Med Chem Lett,2013,23(10):2 844-2 852.
    [7] Tang YH,Lin KJ,You QD.Application of 2D molecular fingerprints based on molecular similarity in visual screening[J].J China Pharm Univ(中国药科大学学报),2009,40(2):178-184.
    [8] Chen L,Li YY,Zhao Q,et al.ADME evaluation in drug discovery.10.Predictions of P-glycoprotein inhibitors using recursive partitioning and naive bayesian classification techniques[J].Mol Pharm,2011,8(3):889-900.
    [9] Myint KZ,Wang L,Tong Q,et al.Molecular fingerprint-based artificial neural networks QSAR for ligand biological activity predictions[J].Mol Pharm,2012,9(10):2 912-2 923.
    [10] Wikel JH,Dow ER.The use of neural networks for variable selection in QSAR[J].Bioorg Med Chem Lett,1993,3(4):645-651.
    [11] Leardi R,Boggia R,Terrile M.Genetic algorithms as a strategy for feature-selection[J].J Chemometrics,1992,6(5):267-281.
    [12] Friedman JH,Roosen CB.An introduction to multivariate adaptive regression splines[J].Stat Methods Med Res,1995,4(3):197-217.
    [13] Rogers D,Hopfinger AL.Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships[J].J Chem Inf Comput Sci,1994,34:854-866.
    [14] Fu X,Jiang S,Li C,et al.Design and synthesis of novel bis(L-amino acid)ester prodrugs of 9-[2-(phosphonomethoxy)ethyl]adenine(PMEA)with improved anti-HBV activity[J].Bioorg Med Chem Lett,2007,17(2):465-470.
    [15] Fu XZ,Ou Y,Pei JY,et al.Synthesis,anti-HBV activity and renal cell toxicity evaluation of mixed phosphonate prodrugs of adefovir[J].Eur J Med Chem,2012,49:211-218.
    [16] Choi JR,Cho DG,Roh KY,et al.A novel class of phosphonate nucleosides.9-[(1-phosphonomethoxycyclopropyl)methyl]guanine as a potent and selective anti-HBV agent[J].J Med Chem,2004,47:2 864-2 869.
    [17] Sekiya K,Takashima H,Udeda N,et al.2-Amino-6-arylthio-9-[2-(phosphonomethoxy)ethyl]purine bis(2,2,2-trifluoroethyl)esters as novel HBV-specific antiviral reagents[J].J Med Chem,2002,45(14):3 138-3 142.
    [18] Wang J,Singh US,Rawal RK,et al.Antiviral activity of novel 2′-fluoro-6′-methylene-carbocyclic adenosine against wild-type and drug-resistant hepatitis B virus mutants[J].Bioorg Med Chem Lett,2011,21(21):6 328-6 331.
    [19] Zhang HW,Detorio M,Herman BD,et al.Synthesis,antiviral activity,cytotoxicity and cellular pharmacology of l-3′-azido-2′,3′-dideoxypurine nucleosides[J].Eur J Med Chem,2011,46(9):3 832-3 844.
计量
  • 文章访问数:  1023
  • HTML全文浏览量:  0
  • PDF下载量:  2063
  • 被引次数: 0
出版历程
  • 刊出日期:  2014-08-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭