• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

基于抗耐药性细菌感染的抗菌肽研究进展

李冰, 李博, 周长林

李冰, 李博, 周长林. 基于抗耐药性细菌感染的抗菌肽研究进展[J]. 中国药科大学学报, 2014, 45(5): 580-586. DOI: 10.11665/j.issn.1000-5048.20140514
引用本文: 李冰, 李博, 周长林. 基于抗耐药性细菌感染的抗菌肽研究进展[J]. 中国药科大学学报, 2014, 45(5): 580-586. DOI: 10.11665/j.issn.1000-5048.20140514
LI Bing, LI Bo, ZHOU Changlin. Progress on antimicrobial peptides against drug-resistant bacterial infection[J]. Journal of China Pharmaceutical University, 2014, 45(5): 580-586. DOI: 10.11665/j.issn.1000-5048.20140514
Citation: LI Bing, LI Bo, ZHOU Changlin. Progress on antimicrobial peptides against drug-resistant bacterial infection[J]. Journal of China Pharmaceutical University, 2014, 45(5): 580-586. DOI: 10.11665/j.issn.1000-5048.20140514

基于抗耐药性细菌感染的抗菌肽研究进展

基金项目: 中央高校基本科研业务费专项资金资助项目(No. ZL2014SK0035);江苏高校优势学科建设工程资助项目(PAPD)

Progress on antimicrobial peptides against drug-resistant bacterial infection

  • 摘要: 随着抗生素的发现及滥用,耐药细菌感染已威胁到了人们的健康,现有抗生素已不能满足临床治疗的需求。因此,解决这一问题已迫在眉睫。本文针对耐药细菌的耐药机制及抗菌肽(antimicrobial peptides,AMPs)这一新型广谱抗菌药物的研究进展进行了综述。
    Abstract: Drug-resistant bacteria from long term use of antibiotics have been threatened human health. The antibiotics now available cannot meet the needs for clinical treatment of drug-resistant bacteria, therefore, it has been a great challenge to find solutions to the problem. This article summarizes the resistance mechanisms of drug-resistant bacteria and reviews the development of a new broad-spectrum antibacterial agent named antimicrobial peptides(AMPs).
  • [1] Walsh TR,Weeks J,Livermore DM,et al.Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health:an environmental point prevalence study[J].Lancet Infect Dis,2011,11(5):355-362.
    [2] Yoneyama H,Katsumata R.Antibiotic resistance in bacteria and its future for novel antibiotic development[J] Biosci Biotechnol Biochem,2006,70(5):1 060-1 075.
    [3] Baroud M,Dandache I,Araj GF,et al.Underlying mechanisms of carbapenem resistance in extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Escherichia coli isolates at a tertiary care centre in Lebanon:role of OXA-48 and NDM-1 carbapenemases[J].Int J Antimicrob Agents,2013,41(1):75-79.
    [4] Sahai S.Dissemination of NDM-1[J].Lancet Infect Dis,2012,12(2):100-101.
    [5] Shi K,Berghuis AM.Structural basis for dual nucleotide selectivity of aminoglycoside 2″-phosphotransferase Iva provides insight on determinants of nucleotide specificity of aminoglycoside kinases[J].J Biol Chem,2012,287(16):13 094-13 102.
    [6] Ramirez MS,Tolmasky ME.Aminoglycoside modifying enzymes[J].Drug Resist Update,2010,13(6):151-171.
    [7] Magalhaes ML,Vetting MW,Gao F,et al.Kinetic and structural analysis of bisubstrate inhibition of the Salmonella enterica aminoglycoside 6′-N-acetyltransferase[J].Biochemistry,2008,47(2):579-584.
    [8] Wright E,Serpersu EH.Enzyme-substrate interactions with an antibiotic resistance enzyme:aminoglycoside nucleotidyltransferase(2″)-Ia characterized by kinetic and thermodynamic methods[J].Biochemistry,2005,44(34):11 581-11 591.
    [9] Ramirez MS,Tolmasky ME.Aminoglycoside modifying enzymes[J].Drug Resist Update,2010,13(6):151-171.
    [10] Piddock LJ.Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria [J].Clin Microbiol Rev,2006,19(2):382-402.
    [11] Sigal N,Cohen-Karni D,Siemion S,et al.MdfA from Escherichia coli,a model rotein for tudying secondary multidrug transport[J].J Mol Microbiol Biotechnol,2006,11(6):308-317.
    [12] Kumar S,Varela MF.Biochemistry of bacterial multidrug efflux pumps[J].Int J Mol Sci,2012,13(4):4 484-4 495.
    [13] Ding Y,Onodera Y,Lee JC,et al.NorB,an efflux pump in Staphylococcus aureus strain MW2,contributes to bacterial fitness in abscesses[J].J Bacteriol,2008,190(21):7 123-7 129.
    [14] Landrum ML,Neumann C,Cook C,et al.Epidemiology of Staphylococcus aureus blood and skin and soft tissue infections in the US military health system,2005-2010[J].JAMA,2012,308(1):50-59.
    [15] Sonneville R,Mirabel M,Hajage D,et al.Neurologic complications and outcomes of infective endocarditis in critically ill patients:the ENDOcardite en REAnimation prospective multicenter study[J].Crit Care Med,2010,39(6):1 474-1 481.
    [16] Hao HH,Yuan ZH,Shen ZQ,et al.Mutational and transcriptomic changes involved in the development of macrolide resistance in campylobacter jejuni[J].Antimicrob Agents Chemother,2013,3(57):1 369-1 378.
    [17] Andini N,Nash KA.Intrinsic macrolide resistance of the Mycobacterium tuberculosis complex is inducible[J].Antimicrob Agents Chemother,2006,50(7):2 560-2 562.
    [18] Nonaka S,Matsuzaki K,Kazama T,et al.Antimicrobial susceptibility and mechanisms of high-level macrolide resistance in clinical isolates of Moraxella nonliquefaciens[J].J Antimicrob Chemother,2014,63(Pt 2):242-247.
    [19] Saito R,Nonaka S,Nishiyama H,et al.Molecular mechanism of macrolide-lincosamide resistance in Moraxella catarrhalis[J].J Med Microbiol,2012,61(Pt 10):1 435-1 438.
    [20] Poirel L, Naas T, Nordmann P. Diversity, epidemiology, and genetics of class D beta-lactamases[J].Antimicrob Agents Chemother,2010,54(1):24-38.
    [21] Wang J,Li B,Li Y,et al.BF-30 effectively inhibits ciprofloxacin-resistant bacteria in vitro and in a rat model of vaginosis [J].Arch Pharm Res,2013,doi: 10.1007/s12272-013-0248-6.
    [22] Hao QR,Wang H,Wang J,et al.Effective antimicrobial activity of Cbf-K16 and Cbf-A7A13 against NDM-1-carrying Escherichia coli vities of the novel ceragenin CSA-13,alone or in combination with colistin,tobramycin,and ciprofloxacin,against Pseudomonas aeruginosa strains isolated from cystic fibrosis patients[J].Chemotherapy,2011,57(6):505-510.
    [23] Desbois AP,Coote PJ.Bactericidal synergy of lysostaphin in combination with antimicrobial peptides[J].Eur J Clin Microbiol Infect Dis,2011,30(8):1 015-1 021.6 mutant Cbf-K16 selectively inhibits non-small cell lung cancer proliferation in vitro[J].Oncol Rep,2013,30(5):2 502-2 510.
    [24] Wang H,Ke MY,Tian Y,et al.BF-30 selectively inhibits melanoma cell proliferation via cytoplasmic membrane permeabilization and DNA-binding in vitro and in B16F10-bearing mice[J].Eur J Pharmacol,2013,707(1/2/3):1-10.
    [25] Engler AC,Wiradharma N,Zhan YO.Emerging trends in macromolecular antimicrobials to fight multi-drug-resistant infections[J].Nano Today,2012,7(3):201-222.
    [26] Nguyen LT,Haney EF,Vogel HJ.The expanding scope of antimicrobial peptide structures and theier modes of action[J].Trends Biotechnol,2011,29(9):464-472.
    [27] Zhou HM,Dou J,Wang J,et al.The antibacterial activity of BF-30 in vitro and in infected burned rats is through interference with cytoplasmic membrane integrity[J].Peptides,2011,32(6):1 131-1 138.
    [28] Ramos R,Domingues L,Gama M.Escherichia coli expression and purification of LL37 fused to a family III carbohydrate-binding module from Clostridium thermocellum[J].Protein Expr Purif,2010,71(1):1-7.
    [29] Zakharchenko NS,Pigoleva SV,Iukhmanova AA et al.Use of the gene of antimicrobial peptide cecropin P1 for producing marker-free transgenic plants[J].Genetika,2009,45(8):1 061-1 066.
    [30] Brogden KA.Antimicrobial peptides:poreformers or metabolic inhibitors in bacteria[J]?Nat Rev:Microbiol,2005,3(3):238-250.
    [31] Cassone M,Otvos L Jr.Synergy among antibacterial peptides and between peptides and small-molecule antibiotics[J].Expert Rev Anti Ther,2010,8(6):703-716.
    [32] Giuliani A,Pirri G,Nicoletto SF.Antimicrobial peptides:an overview of a promising class of therapeutics[J].Cent Eur J Biol,2007,2(1):1-33.
    [33] Hou GB,Meng QX,Song YZ.The perspective of clinical application of antimicrobial peptides[J].Chin Bull Life Sci(生命科学),2012,24(4):390-397.
    [34] Mehta S,Singh C,Plata KB,et al.β-Lactams increase the antibacterial activity of daptomycin against clinical methicillin-resistant Staphylococcus aureus strains and prevent selection of daptomycin-resistant derivatives[J].Antimicrob Agents Chemother,2012,56(12):6 192-6 200.
    [35] Werth BJ,Sakoulas G,Rose WE et al.Ceftaroline increases membrane binding and enhances the activity of daptomycin against daptomycin-nonsusceptible vancomycin-intermediate Staphylococcus aureus in a pharmacokinetic/pharmacodynamic model[J].Antimicrob Agents Chemother,2013,57(1):66-73.
    [36] Monahan LG,Turnbull L,Osvath SR,et al.Rapid conversion of Pseudomonas aeruginosa to a spherical cell morphotype facilitates tolerance to carbapenems and penicillins but increases susceptibility to antimicrobial peptides[J].Antimicrob Agents Chemother,2014,58(4):1 956-1 962.
    [37] Schuch R,Lee HM,Schneider BC,et al.Combination therapy with Lysin CF-301 and antibiotic is superior to antibiotic alone for treating methicillin-resistant Staphylococcus aureus-induced murine bacteremia[J].J Infect Dis,2014,209(9):1 469-1 478.
    [38] MacCallum DM,Desbois AP,Coote PJ.Enhanced efficacy of synergistic combinations of antimicrobial peptides with caspofungin versus Candida albicans in insect and murine models of systemic infection[J].Eur J Clin Microbiol Infect Dis,2013,32(8):1 055-1 062.
    [39] Bozkurt-Guzel C,Savage PB,Gerceker AA.In vitro acti
计量
  • 文章访问数:  1158
  • HTML全文浏览量:  3
  • PDF下载量:  2034
  • 被引次数: 0
出版历程
  • 刊出日期:  2014-10-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭