• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

自组装多肽在生物医药领域的研究进展

张晨羽, 李雪, 钱海, 黄文龙

张晨羽, 李雪, 钱海, 黄文龙. 自组装多肽在生物医药领域的研究进展[J]. 中国药科大学学报, 2015, 46(2): 250-256. DOI: 10.11665/j.issn.1000-5048.20150219
引用本文: 张晨羽, 李雪, 钱海, 黄文龙. 自组装多肽在生物医药领域的研究进展[J]. 中国药科大学学报, 2015, 46(2): 250-256. DOI: 10.11665/j.issn.1000-5048.20150219
ZHANG Chenyu, LI Xue, QIAN Hai, HUANG Wenlong. Self-assembled peptide:insights and biomedicine applications[J]. Journal of China Pharmaceutical University, 2015, 46(2): 250-256. DOI: 10.11665/j.issn.1000-5048.20150219
Citation: ZHANG Chenyu, LI Xue, QIAN Hai, HUANG Wenlong. Self-assembled peptide:insights and biomedicine applications[J]. Journal of China Pharmaceutical University, 2015, 46(2): 250-256. DOI: 10.11665/j.issn.1000-5048.20150219

自组装多肽在生物医药领域的研究进展

基金项目: 国家自然科学基金资助项目(No.81172932,No.81273376)

Self-assembled peptide:insights and biomedicine applications

  • 摘要: 自组装多肽可利用分子间非共价键作用力自发或触发自组装,形成有序的纳米结构,表现出单个多肽分子或低级分子聚集体所没有的独特特性与功能,近年来该领域已成为分子自组装研究的热点之一。根据自组装是否受外界环境的调控将其分为自发型和触发型两种类型,详细介绍了自组装多肽的分类以及其在生物医药领域中的应用前景,包括作为抗肿瘤药物及抗生素药物;作为药物载体改善药物的性质,实现药物靶向性;以及在细胞培养支架、组织修复、生物医学检测等方面的应用。
    Abstract: Self-assembled peptides occur via inter-molecular non-covalent assembly, spontaneity or triggering, and the formed nanostructures have been found to have certain features and functions which are not shown by the original peptide molecules or low-hierarchical molecules. There are growing attentions on the self-assembled peptide. This review provides detailed classifications of self-assembled peptides, i. e. , spontaneity and triggering, according to how the self-assemble responds or adjusts to outer environment. In addition, the summary offers potentials of their applications in biomedicine, such as anti-tumor and anti-bacterial medicine, drug carriers modifying pharmaceutical features of drugs, enhanced drug targeting, matrix as cell culture, tissue regeneration, and biomedicinal detection.
  • [1] Petkau-Milroy K,Brunsveld L.Supramolecular chemical biology:bioactive synthetic self-assemblies[J].Org Biomol Chem,2013,11(2):219-232.
    [2] Fichman G, Gazit E. Self-assembly of short peptides to form hydrogels:design of building blocks,physical properties and technological applications[J].Acta Biomater,2014,10(4):1671-1682.
    [3] Hamley IW.Self-assembly of amphiphilicpeptides[J].Soft Matter,2011,7(9):4122-4138.
    [4] Cavalli S, Handgraaf JW, Tellers EE, et al.Two-dimensional ordered β-sheet lipopeptide monolayers[J].J Am Chem Soc,2006,128(42):13959-13966.
    [5] Wang H,Ren C,Song Z,et al.Enzyme-triggered self-assembly of a small molecule:a supramolecular hydrogel with leaf-like structures and an ultra-low minimum gelation concentration[J].Nanotechnology,2010,21(22):225606.
    [6] Ou C,Wang H,Yang Z,et al.Precursor-involved and conversion rate-controlled self-assembly of a ‘supergelator’ in thixotropic hydrogels for drug delivery[J].Chinese J Chem,2012,30(8):1781-1787.
    [7] Li X,Gao Y,Kuang Y,et al.Enzymatic formation of a photoresponsive supramolecular hydrogel[J].Chem Commun,2010,46(29):5364-5366.
    [8] Parrott MC, Luft JC, Byrne JD, et al. Tunable bifunctionalsilyl ether cross-linkers for the design of acid-sensitive biomaterials[J].J Am Chem Soc,2010,132(50):17928-17932.
    [9] Kang YJ,Zhou XR,Luo SZ.Synthesis and characterization of a pH-responsive amphiphilic peptide hydrogel composed of pal-RLRRLRARARA[J].China Sci Paper(中国科技论文),2012,6(7):437-441.
    [10] Chen CS,Xu XD,Li SY,et al.Photo-switched self-assembly of a gemini α-helical peptide into supramolecular architectures[J].Nanoscale,2013,5(14):6270-6274.
    [11] Rughani RV,Branco MC,Pochan DJ,et al.De novo design of a shear-thin recoverable peptide-based hydrogel capable of intrafibrillar photopolymerization[J].Macromolecules,2010,43(19):7924-7930.
    [12] Gao Y,Yang Z,Kuang Y,et al.Enzyme-instructed self-assembly of peptide derivatives to form nanofibers and hydrogels[J].Biopolymers,2010,94(1):19-31.
    [13] Dehsorkhi A,Hamley I W,Seitsonen J,et al.Tuning self-assembled nanostructures through enzymatic degradation of a peptide amphiphile[J].Langmuir,2013,29(22):6665-6672.
    [14] Hirst AR, Roy S, Arora M, et al. Biocatalytic induction of supramolecularorder[J].Nat Chem,2010,2(12):1089-1094.
    [15] Yang Z,Liang G,Wang L,et al.Using a kinase/phosphatase switch to regulate a supramolecular hydrogel and forming the supramolecular hydrogel in vivo[J].J Am Chem Soc,2006,128(9):3038-3043.
    [16] Williams RJ,Mart RJ,Ulijn RV.Exploiting biocatalysis in peptide self-assembly[J].Pep Sci,2010,94(1):107-117.
    [17] Tsitsilianis C.Responsive reversible hydrogels from associative “smart” macromolecules[J].Soft Matter,2010,6(11):2372-2388.
    [18] Yang ZM,Xu KM,Guo ZF,et al.Intracellular enzymatic formation of nanofibers results in hydrogelation and regulated cell death[J].Adv Mater,2007,19(20):3152-3156.
    [19] Chen L,Patrone N,Liang JF.Peptide self-assembly on cell membranes to induce cell lysis[J].Biomacromolecules,2012,13(10):3327-3333.
    [20] Chen C, Pan F, Zhang S, et al. Antibacterial activities of short designer peptides:a link between propensity for nanostructuring and capacity for membrane destabilization[J].Biomacromolecules,2010,11(2):402-411.
    [21] Debnath S, Shome A, Das D, et al. Hydrogelation through self-assembly of Fmoc-peptide functionalized cationic amphiphiles:potent antibacterial agent[J].J Phys Chem B,2010,114(13):4407-4415.
    [22] Shankar SS,Benke SN,Nagendra N,et al.Self-assembly to function:design,synthesis,and broad spectrum antimicrobial properties of short hybrid E-vinylogous lipopeptides[J].J Med Chem,2013,56(21):8468-8474.
    [23] Montenegro J,Ghadiri MR,Granja JR.Ion channel models based on self-assembling cyclic peptide nanotubes[J].Accounts Chem Res,2013,46(12):2955-2965.
    [24] Yang Z,Liang G,Guo Z,et al.Intracellular hydrogelation of small molecules inhibits bacterial growth[J].Angew Chem Int Edit,2007,46(43):8216-8219.
    [25] Chairatana P,Nolan EM.Molecular basis for self-assembly of a human host-defense peptide that entraps bacterial pathogens[J].J Am Chem Soc,2014,136(38):13267-13276.
    [26] Liu L,Xu K,Wang H,et al.Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent[J].Nat Nanotech-nol,2009,4(7):457-463.
    [27] Salick DA,Pochan DJ,Schneider JP.Design of an injectable β-hairpin peptide hydrogel that kills methicillin-resistant Staphylococcus aureus[J].Adv Mater,2009,21(41):4120-4123.
    [28] Liu Y,Yang Y,Wang C,et al.Stimuli-responsive self-assembling peptides made from antibacterial peptides[J].Nanoscale,2013,5(14):6413-6421.
    [29] Xu H,Wang J,Han S,et al.Hydrophobic-region-induced transitions in self-assembled peptide nanostructures[J].Langmuir,2009,25(7):4115-4123.
    [30] Makovitzki A,Baram J,Shai Y.Antimicrobial lipopolypeptides composed of palmitoyl Di-and tricationic peptides: in vitro and in vivo activities,self-assembly to nanostructures,and a plausible mode of action[J]?Biochemistry-us,2008,47(40):10630-10636.
    [31] Chen L,Liang JF.Peptide fibrils with altered stability,activity,and cell selectivity[J].Biomacromolecules,2013,14(7):2326-2331.
    [32] Naidoo VB,Rautenbach M.Self-assembling organo-peptide bolaphiles with KLK tripeptide head groups display selective antibacterial activity[J].J Pept Sci,2013,19(12):784-791.
    [33] Collier JH, Rudra JS, Gasiorowski JZ, et al. Multi-component extracellular matrices based on peptide self-assembly[J].ChemSoc Rev,2010,39(9):3413-3424.
    [34] Branco MC,Pochan DJ,Wagner NJ,et al.The effect of protein structure on their controlled release from an injectable peptide hydrogel[J].Biomaterials,2010,31(36):9527-9534.
    [35] van Hell AJ,Crommelin DJA,Hennink WE,et al.Stabilization of peptide vesicles by introducing inter-peptide disulfide bonds[J].Pharm Res,2009,26(9):2186-2193.
    [36] Hua D, Kong W, Zheng X, et al. Potent tumor targeting drug release system comprising MMP-2 specific peptide fragment with self-assembling characteristics[J].Drug Des Dev Ther,2014,8:1839.
    [37] Li Y,Zheng X,Cao Z,et al.Self-assembled peptide(CADY-1)improved the clinical application of doxorubicin[J].Int J Pharm,2012,434(1):209-214.
    [38] Xu XD,Chen CS,Lu B,et al.Coassembly of oppositely charged short peptides into well-defined supramolecular hydrogels[J].J Phys Chem B,2010,114(7):2365-2372.
    [39] Xu XD,Liang L,Chen CS,et al.Peptide hydrogel as an intraocular drug delivery system for inhibition of postoperative scarring formation[J].ACS Appl Mater Inter,2010,2(9):2663-2671.
    [40] Wiradharma N,Tong YW,Yang YY.Self-assembled oligopeptide nanostructures for co-delivery of drug and gene with synergistic therapeutic effect[J].Biomaterials,2009,30(17):3100-3109.
    [41] Tang C,Miller AF,Saiani A.Peptide hydrogels as mucoadhesives for local drug delivery[J].Int J Pharm,2014,465(1):427-435.
    [42] Kim JK, Anderson J, Jun HW,et al.Self-assembling peptide amphiphile-based nanofiber gel for bioresponsive cisplatin delivery[J].Mol Pharm,2009,6(3):978-985.
    [43] Liang J, Wu WL, Xu XD, et al. pH responsive micelle self-assembled from a new amphiphilic peptide as anti-tumor drug carrier[J].Colloids Surf B Biointerfaces,2014,114:398-403.
    [44] Liu J,Zhang L,Yang Z,et al.Controlled release of paclitaxel from a self-assembling peptide hydrogel formed in situ and antitumor study in vitro[J].Int J Nanomed,2011,6:2143-2153.
    [45] Briuglia ML,Urquhart AJ,Lamprou DA.Sustained and controlled release of lipophilic drugs from a self-assembling amphiphilic peptide hydrogel[J].Int J Pharm,2014,474(1):103-111.
    [46] Chen Y,Song S,Yan Z,et al.Self-assembled rosette nanotubes encapsulate and slowly release dexamethasone[J].Int J Nanomed,2011,6:1035.
    [47] Moitra P,Kumar K,Kondaiah P,et al.Efficacious anticancer drug delivery mediated by a pH-sensitive self-assembly of a conserved tripeptide derived from tyrosine kinase NGF receptor[J].Angew ChemInt Edit,2014,53(4):1113-1117.
    [48] Roy R,Deb J,Jana SS,et al.Peptide conjugates of a nonsteroidal anti-inflammatory drug as supramolecular gelators:synthesis,characterization,and biological studies[J].Chem Asian J,2014,9(11):3196-3206.
    [49] Huang R,Qi W,Feng L,et al.Self-assembling peptide-polysaccharide hybrid hydrogel as a potential carrier for drug delivery[J].Soft Matter,2011,7(13):6222-6230.
    [50] Huang H,Ding Y,Sun XS,et al.Peptide hydrogelation and cell encapsulation for 3D culture of MCF-7 breast cancer cells[J].PloS One,2013,8(3):e59482.
    [51] Kyle S,Aggeli A,Ingham E,et al.Production of self-assembling biomaterials for tissue engineering[J].Trends Biotechnol,2009,27(7):423-433.
    [52] Galler KM,Aulisa L,Regan KR,et al.Self-assembling multidomain peptide hydrogels:designed susceptibility to enzymatic cleavage allows enhanced cell migration and spreading[J].J Am Chem Soc,2010,132(9):3217-3223.
    [53] Gelain F,Unsworth LD,Zhang S.Slow and sustained release of active cytokines from self-assembling peptide scaffolds[J].J Control Release,2010,145(3):231-239.
    [54] Bakota EL,Aulisa L,Galler KM,et al.Enzymatic cross-linking of a nanofibrous peptide hydrogel[J].Biomacromolecules,2010,12(1):82-87.
    [55] Nune M, Kumaraswamy P, Maheswari Krishnan U, et al.Self-assembling peptide nanofibrous scaffolds for tissue engineering:novel approaches and strategies for effective functional regeneration[J].Curr Protein Pept Sci,2013,14(1):70-84.
    [56] Arosio P,Owczarz M,Wu H,et al.End-to-end self-assembly of RADA 16-I nanofibrils in aqueous solutions[J].Biophys J,2012,102(7):1617-1626.
    [57] Matson JB,Stupp SI.Self-assembling peptide scaffolds for regenerative medicine[J].Chem Commun,2012,48(1):26-33.
    [58] Chen C, Gu Y, Deng L, et al.Tuning gelation kinetics and mechanical rigidity of β-hairpin peptide hydrogels via hydrophobic amino acid substitutions[J].ACS Appl Mater Interfaces,2014,6(16):14360-14368.
    [59] Yang Z, Ho PL, Liang G, et al. Using β-lactamase to trigger supramolecular hydrogelation[J].J Am Chem Soc,2007,129(2):266-267.
  • 期刊类型引用(3)

    1. 张俊丽,曹俊如,张瑶瑶,鲁胜男,苏峰,何广卫. siRNA纳米递药系统在胶质瘤治疗中的研究进展. 医药前沿. 2024(34): 52-57 . 百度学术
    2. 张琼丹,陈朝霞,李芾瑶,张宇. siRNA纳米递送系统研究进展. 生物化学与生物物理进展. 2022(06): 1018-1035 . 百度学术
    3. 王悦,黄元政,朱丹丹,廉宝平,刘潇璇. 基于聚酰胺类树形分子前药的纳米给药系统在恶性肿瘤治疗中的应用. 中南药学. 2021(07): 1343-1352 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  1499
  • HTML全文浏览量:  1
  • PDF下载量:  5335
  • 被引次数: 4
出版历程
  • 刊出日期:  2015-04-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭