• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

基于红细胞的载药系统研究进展

孙雅楠, 马琳, 张彪, 苏靖, 邱明丰

孙雅楠, 马琳, 张彪, 苏靖, 邱明丰. 基于红细胞的载药系统研究进展[J]. 中国药科大学学报, 2015, 46(4): 481-487. DOI: 10.11665/j.issn.1000-5048.20150416
引用本文: 孙雅楠, 马琳, 张彪, 苏靖, 邱明丰. 基于红细胞的载药系统研究进展[J]. 中国药科大学学报, 2015, 46(4): 481-487. DOI: 10.11665/j.issn.1000-5048.20150416
SUN Yanan, MA Lin, ZHANG Biao, SU Jing, QIU Mingfeng. Advances of erythrocyte-inspired delivery systems[J]. Journal of China Pharmaceutical University, 2015, 46(4): 481-487. DOI: 10.11665/j.issn.1000-5048.20150416
Citation: SUN Yanan, MA Lin, ZHANG Biao, SU Jing, QIU Mingfeng. Advances of erythrocyte-inspired delivery systems[J]. Journal of China Pharmaceutical University, 2015, 46(4): 481-487. DOI: 10.11665/j.issn.1000-5048.20150416

基于红细胞的载药系统研究进展

基金项目: 上海市科技支撑项目资助(No.13401900801);上海交通大学晨星奖励计划B类项目资助(No.14X100010061)

Advances of erythrocyte-inspired delivery systems

  • 摘要: 基于红细胞(RBC)的新型药物输送系统近年来倍受关注,天然红细胞是机体固有成分,与传统药物载体相比,具有生物相容性高、体内半衰期长等优势。本文综述了红细胞药物载体的特点、制备方法及其载药的最新研究进展;同时,介绍了近年来出现的新型红细胞膜药物输送系统即红细胞膜包裹纳米粒(RBC-NP)和红细胞膜纳米海绵技术。
    Abstract: In recent years, erythrocyte-inspired delivery systems have gained much attention. Erythrocytes(red blood cells, RBCs)are natural components of our bodies. Compared to the conventional drug delivery systems, RBCs have such advantages, as higher degree of biocompatibility and longer half-life. Herein, characteristics for drug delivery, preparation methods and recent research of RBC carriers are reviewed. Besides the latest development on RBC membrane-camouflaged nanoparticle systems(RBC-NP)and RBC membrane nanosponges, which have emerged as new trends of erythrocyte-inspired delivery systems are introduced.
  • [1] Alabi CA,Love KT,Sahay G,et al.Multiparametric approach for the evaluation of lipid nanoparticles for siRNA delivery[J].Proc Natl Acad Sci U S A,2013,110(32):12881-12886.
    [2] Bhateria M, Rachumallu R, Singh R, et al. Erythrocytes-based synthetic delivery systems:transition from conventional to novel engineering strategies[J].Expert Opin Drug Deliv,2014,11(8):1219-1236.
    [3] Yoo JW,Irvine DJ,Discher DE,et al.Bio-inspired,bioengineered and biomimetic drug delivery carriers[J].Nat Rev Drug Discov,2011,710(7):521-535.
    [4] Hamidi M,Tajerzadeh H.Carrier erythrocytes:an overview[J].Drug Deliv,2003,10(1):9-20.
    [5] Carmen L,Teresa P,Pinilla M,et al.Mouse erythrocytes as carriers for coencapsulated alcohol and aldehyde dehydrogenase obtained by electroporation in vivo survival rate in circulation,organ distribution and ethanol degradation[J].Life Sci,2001,68:2001-2016.
    [6] Lizano C,Luque J,Pinilla M,et al.In vitro and in vivo study of glutamate dehydrogenase encapsulated into mouse erythrocytes by hypotonic dialysis procedure[J].Life Sci,1999,65(26):2781-2789.
    [7] Hu CMJ, Fang RH, Zhang L. Erythrocyte-inspired delivery systems[J].Adv Health Mater,2012,1(5):537-547.
    [8] Wang X. Preparation of the methotrexate mono-encapsulated erythrocytes and methotrexate-vincristine co-encapsulated erythrocytes and their biological character in vitro(甲氨喋吟单载和甲氨喋岭与长春新碱双载红细胞的制备及体外活性研究)[D].Shanghai:The Second Military Medical University,2005.
    [9] Yuan SH,Wang H,Ge WH,et al.Protection of hepatic and renal function by methotrexate loading erythrocytes in hepatocarcinoma rats[J].Pharm Clin Res(药学与临床研究),2010,18(2):164-167.
    [10] Peng LH.Observation of the effects of hepatic and ranal function by methotrexate loading erythrocytes in hepatocarcinoma rats[J].Chin Med Mod Dis Edu China(中国中医药现代远程教育),2012(1):149.
    [11] Lian YS.Methods for determination of morphine using high-performance liquid chromatography and studies on carrier erythrocyte encapsulated morphine(吗啡高效液相色谱测定及吗啡红细胞载体性能的研究)[D].Najing:Southeast University,2004.
    [12] Antonelli A,Sfara C,Battistelli S,et al.New strategies to prolong the in vivo life span of iron-based contrast agents for MRI[J].PLoS One,2013,8(10):e78542.
    [13] Harisa GI,Ibrahim MF,Alanazi F,et al.Engineering erythrocytes as a novel carrier for the targeted delivery of the anticancer drug paclitaxel[J].Saudi Pharm J,2013,35(8):1431-1439.
    [14] Wang YQ,Wang F,Deng XQ,et al.Delivery of therapeutic AGT shRNA by PEG-Bu for hypertension therapy[J].PLoS One,2013,8(7):e68651.
    [15] Hamidi M,Zarrin AH,Foroozesh M,et al.Preparation and in vitro evaluation of carrier erythrocytes for RES-targeted delivery of interferon-alpha 2b[J].Int J Pharm,2007,341(1):125-133.
    [16] Chiarantini L,Cerasi A,Fraternale A,et al.Comparison of novel delivery systems for antisense peptide nucleic acids[J].J Control Release,2005,109(1):24-36.
    [17] Xu JL.Experimental study on magnetized technique of doxorubicin-load erythrocytes(多柔比星载体红细胞磁化技术的实验研究)[D].Shanghai:The Second Military Medical University,2009.
    [18] Wang C,Sun X,Cheng L,et al.Multifunctional theranostic red blood cells for magnetic-field-enhanced in vivo combination therapy of cancer[J].Adv Mater,2014,26(28):4794-4802.
    [19] Cinti C, Taranta M, Naldi I, et al. Newly engineered magnetic erythrocytes for sustained and targeted delivery of anti-cancer therapeutic compounds[J].PLoS One,2011,6(2):e17132.
    [20] Alanazi FK, Harisa GEDI, Maqboul A, et al. Biochemically altered human erythrocytes as a carrier for targeted delivery of primaquine:an in vitro study[J].Arch Pharm Res,2011,34(4):563-571.
    [21] Bossa F, Annese V, Valvano MR, et al. Erythrocytes-mediated delivery of dexamethasone 21-phosphate in steroid-dependent ulcerative colitis:a randomized,double-blind Sham-controlled study[J].Inflamm Bowel Dis,2013,19(9):1872-1879.
    [22] Harisa GI,Ibrahim MF,Alanazi FK.Erythrocyte-mediated delivery of pravastatin:in vitro study of effect of hypotonic lysis on biochemical parameters and loading efficiency[J].Arch Pharm Res,2012,35(8):1431-1439.
    [23] Favretto ME,Cluitmans JCA,Bosman G,et al.Human erythrocytes as drug carriers:loading efficiency and side effects of hypotonic dialysis,chlorpromazine treatment and fusion with liposomes[J].J Control Release,2013,170(3):343-351.
    [24] Shi G,Mukthavaram R,Kesari S,et al.Distearoyl anchor-painted erythrocytes with prolonged ligand retention and circulation properties in vivo[J].Adv Health Mater,2014,3(1):142-148.
    [25] Doshi N,Zahr AS,Bhaskar S,et al.Red blood cell-mimicking synthetic biomaterial particles[J].Proc Natl Acad Sci U S A,2009,106(51):21495-21499.
    [26] Deuticke,Kim M,Zolinev C.The influence of amphotericin-B on the permeability of mammalian erythrocytes to nonelectrolytes,anions and cations[J].Biochim Biophys Acta,1973,318:345-359.
    [27] Tsong TY,Kinosita K.Use of voltage pulses for the pore opening and drug loading,and the subsequent resealing of red blood cells[J].Bibl Haematol,1985,51:108-114.
    [28] Hirlekar RS,Patel PD,Dand N,et al.Drug loaded erythrocytes:as novel drug delivery system[J].Curr Pharm Des,2008,14(1):63-70.
    [29] Magnani M,Rossi L.Approaches to erythrocyte-mediated drug delivery[J].Expert Opin Drug Deliv,2014,11(5):677-687.
    [30] Kong LQ,Li Y,Gao H,et al.Avidin-biotin technique[J].Prog Veter Med(动物医学进展),2008,29(4):100-102.
    [31] Magnani ML,Chiarantini U,Mancini U.Preparation and characterization of biotinylated red blood cells[J].Appl Biochem Biotechnol,1994,20(3):335-345.
    [32] Gupta N,Patel B,Ahsan F.Nano-engineered erythrocyte ghosts as inhalational carriers for delivery of fasudil:preparation and characterization[J].Pharm Res,2014,31(6):1553-1565.
    [33] Luk BT,Hu CMJ,Fang RH,et al.Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles[J].Nanoscale,2014,6(5):2730-2737.
    [34] Aryal S,Hu CMJ,Fang RH,et al.Erythrocyte membrane-cloaked polymeric nanoparticles for controlled drug loading and release[J].Nanomedicine,2013,8(8): 1271-1280.
    [35] Tang HF,Li X,Gong LB.Recent development on the RBC delivery system[J].Eval Anal Drug Use Hosp China(中国医院用药评价与分析),2011,11(10):959-960.
    [36] Gao W, Zhang L. Anticancer agents: unleash the forces within[J].Nat Chem,2012,4(12):971-972.
    [37] Delcea M,Sternberg N,Yashchenok AM,et al.Nanoplasmonics for dual-molecule release through nanopores in the membrane of red blood cells[J].ACS Nano,2012,6(5):4169-4180.
    [38] Hu CMJ,Zhang L,Aryal S,et al.Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform[J].Proc Natl Acad Sci U S A,2011,108(27):10980-10985.
    [39] Fang RH,Hu CMJ,Kevin NH,et al.Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles[J].Nanoscale,2013,5(19):8884-8888.
    [40] Fang RH,Hu CMJ,Luk BT,et al.Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery[J].Nano Lett,2014,14(4):2181-2188.
    [41] Han J,Cai J,Borjihan W,et al.Preparation of novel curdlan nanoparticles for intracellular siRNA delivery[J].Carbohydr Polym,2015,117:324-330.
    [42] Xiang S, Su J, Tong H, et al. Biscarbamate cross-linked low molecular weight PEI for delivering IL-1 receptor antagonist gene to synoviocytes for arthritis therapy[J].Biomaterials,2012,33(27):6520-6532.
    [43] Wang YQ,Su J,Wu F,et al.Biscarbamate cross-linked polyethylenimine derivative with low molecular weight,low cytotoxicity,and high efficiency for gene delivery[J].Int J Nanomedicine,2012,7:693.
    [44] Hu CMJ,Fang RH,Luk BT,et al.Nanoparticle-detained toxins for safe and effective vaccination[J].Nat Nanotechnol,2013,8(12):933-938.
    [45] Hu CMJ,Fang RH,Copp J,et al.A biomimetic nanosponge that absorbs pore-forming toxins[J].Nat Nanotechnol,2013,8(5):336-340.
    [46] Copp JA,Fang RH,Luk BT,et al.Clearance of pathological antibodies using biomimetic nanoparticles[J].Proc Natl Acad Sci U S A,2014,111(37):13481-13486.
    [47] Getts DR,Martin AJ,McCarthy DP,et al.Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis[J].Nat Biotechnol,2012,30(12):1217-1224.
    [48] Ge W,Lian Y,Kang X,et al.Pharmacokinetics of morphine loaded into erythrocyte in rabbits[J].J China Pharm Univ(中国药科大学学报),2006,37(2):150-152.
    [49] Fan W,Yan W,Xu Z,et al.Erythrocytes load of low molecular weight chitosan nanoparticles as a potential vascular drug delivery system[J]. Colloids Surf B Biointerfaces,2012,95:258-265.
  • 期刊类型引用(1)

    1. 魏祎,叶海燕,赵国静,宋欢,孙英,周佩夏,王坤,胡海波,陆学超. 基于网络药理学和分子对接探讨扶正化纤方治疗特发性肺纤维化的机制. 海军医学杂志. 2024(02): 180-185 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  1334
  • HTML全文浏览量:  10
  • PDF下载量:  3610
  • 被引次数: 1
出版历程
  • 刊出日期:  2015-08-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭