• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

靶向免疫系统的递药系统研究进展

贺威, 齐海霞, 董磊, 张峻峰

贺威, 齐海霞, 董磊, 张峻峰. 靶向免疫系统的递药系统研究进展[J]. 中国药科大学学报, 2015, 46(5): 513-520. DOI: 10.11665/j.issn.1000-5048.20150501
引用本文: 贺威, 齐海霞, 董磊, 张峻峰. 靶向免疫系统的递药系统研究进展[J]. 中国药科大学学报, 2015, 46(5): 513-520. DOI: 10.11665/j.issn.1000-5048.20150501
HE Wei, QI Haixia, DONG Lei, ZHANG Junfeng. Research advances in drug delivery system targeting immune system[J]. Journal of China Pharmaceutical University, 2015, 46(5): 513-520. DOI: 10.11665/j.issn.1000-5048.20150501
Citation: HE Wei, QI Haixia, DONG Lei, ZHANG Junfeng. Research advances in drug delivery system targeting immune system[J]. Journal of China Pharmaceutical University, 2015, 46(5): 513-520. DOI: 10.11665/j.issn.1000-5048.20150501

靶向免疫系统的递药系统研究进展

基金项目: 国家杰出青年科学基金资助项目(No.81025019);国家高技术研究发展计划(863计划)资助项目(No.2014AA020707);国家自然科学基金资助项目(No.51173076)

Research advances in drug delivery system targeting immune system

  • 摘要: 靶向免疫系统的递药系统在治疗炎症性疾病中发挥着重要作用。靶向免疫系统的递药系统可靶向免疫细胞或免疫器官,分为由配体-受体和抗原-抗体介导的主动靶向以及pH、颗粒介导的被动靶向。本文针对上述分类,综述了近年来靶向免疫系统的递药系统的新进展,为设计安全有效的靶向免疫细胞或免疫器官的递药系统、以及对炎症性疾病的高效安全治疗提供理论参考。
    Abstract: Drug delivery system targeting immune system plays an important role in the treatment of inflammatory diseases. Drug delivery system targeting immune system could target immune cells or immune organs. It could be divided into active targeting mediated by the interaction of ligand-receptor or antigen-antibody and passive targeting mediated by pH, particles and so on. This review summarizes new progress for drug delivery system targeting immune system, which provides a theoretical reference for designing the safe and effective drug delivery system and providing efficient and safe treatment for inflammatory diseases.
  • [1] Lopalco G,Cantarini L,Vitale A,et al.Interleukin-1 as a common denominator from autoinflammatory to autoimmune disorders:premises,perils,and perspectives[J].Mediators Inflamm,2015,2015:194864.
    [2] Monti P,Bonifacio E.Interleukin-7 and type 1 diabetes[J].Curr Diab Rep,2014,14(9):518.
    [3] Singh A,Talekar M,Raikar A,et al.Macrophage-targeted delivery systems for nucleic acid therapy of inflammatory diseases[J].J Control Release,2014,190:515-530.
    [4] Murray PJ,Wynn TA.Protective and pathogenic functions of macrophage subsets[J].Nat Rev Immunol,2011,11(11):723-737.
    [5] Mosser DM,Edwards JP.Exploring the full spectrum of macrophage activation[J].Nat Rev Immunol,2008,8(12):958-969.
    [6] Ruffell B,Affara NI,Coussens LM.Differential macrophage programming in the tumor microenvironment[J].Trends Immunol,2012,33(3):119-126.
    [7] Nakashima-Matsushita N, Homma T, Yu S, et al. Selective expression of folate receptor beta and its possible role in methotrexate transport in synovial macrophages from patients with rheumatoid arthritis[J].Arthritis Rheum,1999,42(8):1609-1616.
    [8] Bilthariya U,Jain N,Rajoriya V,et al.Folate-conjugated albumin nanoparticles for rheumatoid arthritis-targeted delivery of etoricoxib[J].Drug Dev Ind Pharm,2015,41(1):95-104.
    [9] Thomas TP,Goonewardena SN,Majoros IJ,et al.Folate-targeted nanoparticles show efficacy in the treatment of inflammatory arthritis[J].Arthritis Rheum,2011,63(9):2671-2680.
    [10] Ayala-Lopez W,Xia W,Varghese B,et al.Imaging of atherosclerosis in apoliprotein e knockout mice:targeting of a folate-conjugated radiopharmaceutical to activated macrophages[J].J Nucl Med,2010,51(5):768-774.
    [11] Furusho Y,Miyata M,Matsuyama T,et al.Novel therapy for atherosclerosis using recombinant immunotoxin against folate receptor beta-expressing macrophages[J].J Am Heart Assoc,2012,1(4):e3079.
    [12] Taylor PR, Martinez-Pomares L, Stacey M, et al. Macrophage receptors and immune recognition[J].Annu Rev Immunol,2005,23:901-944.
    [13] Stahl P,Schlesinger PH,Sigardson E,et al.Receptor-mediated pinocytosis of mannose glycoconjugates by macrophages:characterization and evidence for receptor recycling[J].Cell,1980,19(1):207-215.
    [14] Kriegel C,Amiji M.Oral TNF-alpha gene silencing using a polymeric microsphere-based delivery system for the treatment of inflammatory bowel disease[J].J Control Release,2011,150(1):77-86.
    [15] Xiao B,Laroui H,Ayyadurai S,et al.Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-alpha RNA interference for IBD therapy[J].Biomaterials,2013,34(30):7471-7482.
    [16] Asthana GS,Asthana A,Kohli DV,et al.Mannosylated chitosan nanoparticles for delivery of antisense oligonucleotides for macrophage targeting[J].Biomed Res Int,2014,2014:526391.
    [17] Huang Z,Gan J,Jia L,et al.An orally administrated nucleotide-delivery vehicle targeting colonic macrophages for the treatment of inflammatory bowel disease[J].Biomaterials,2015,48:26-36.
    [18] Solinas G,Germano G,Mantovani A,et al.Tumor-associated macrophages(TAM)as major players of the cancer-related inflammation[J].J Leukocyte Biol,2009,86(5):1065-1073.
    [19] Amoozgar Z,Goldberg MS.Targeting myeloid cells using nanoparticles to improve cancer immunotherapy[J].Adv Drug Deliv Rev,2014,doi: 10.1016/j.addr.2014.09.007.
    [20] Zhan X,Jia L,Niu Y,et al.Targeted depletion of tumour-associated macrophages by an alendronate-glucomannan conjugate for cancer immunotherapy[J].Biomaterials,2014,35(38):10046-10057.
    [21] Huang Z,Yang Y,Jiang Y,et al.Anti-tumor immune responses of tumor-associated macrophages via toll-like receptor 4 triggered by cationic polymers[J].Biomaterials,2013,34(3):746-755.
    [22] Kono Y,Kawakami S,Higuchi Y,et al.Antitumor effect of nuclear factor-kappaB decoy transfer by mannose-modified bubble lipoplex into macrophages in mouse malignant ascites[J].Cancer Sci,2014,105(8):1049-1055.
    [23] Locke LW,Mayo MW,Yoo AD,et al.PET imaging of tumor associated macrophages using mannose coated 64Cu liposomes[J].Biomaterials,2012,33(31):7785-7793.
    [24] Zuo L,Huang Z,Dong L,et al.Targeting delivery of anti-TNF alpha oligonucleotide into activated colonic macrophages protects against experimental colitis[J].Gut,2010,59(4):470-479.
    [25] Dong L,Gao S,Diao H,et al.Galactosylated low molecular weight chitosan as a carrier delivering oligonucleotides to Kupffer cells instead of hepatocytes in vivo[J].J Biomed Mater Res A,2008,84(3):777-784.
    [26] Huang Z,Zhang Z,Jiang Y,et al.Targeted delivery of oligonucleotides into tumor-associated macrophages for cancer immunothe-rapy[J].J Control Release,2012,158(2):286-292.
    [27] Jain S,Amiji M.Tuftsin-modified alginate nanoparticles as a noncondensing macrophage-targeted DNA delivery system[J].Biomacromolecules,2012,13(4):1074-1085.
    [28] Jain S,Amiji M.Tuftsin-modified alginate nanoparticles as a noncondensing macrophage-targeted DNA delivery system[J].Biomacromolecules,2012,13(4):1074-1085.
    [29] Laroui H,Geem D,Xiao B,et al.Targeting intestinal inflammation with CD98 siRNA/PEI-loaded nanoparticles[J].Mol Ther,2014,22(1):69-80.
    [30] Kriegel C,Amiji MM.Dual TNF-alpha/Cyclin D1 gene silencing with an oral polymeric microparticle system as a novel strategy for the treatment of inflammatory bowel disease[J].Clin Transl Gastroenterol,2011,2:e2.
    [31] Khan S,Greenberg JD,Bhardwaj N.Dendritic cells as targets for therapy in rheumatoid arthritis[J].Nat Rev Rheumatol,2009,5(10):566-571.
    [32] Zhou L,Chong MM,Littman DR.Plasticity of CD4+ T cell lineage differentiation[J].Immunity,2009,30(5):646-655.
    [33] Ohnmacht C,Pullner A,King SB,et al.Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity[J].J Exp Med,2009,206(3):549-559.
    [34] Hamdy S,Haddadi A,Hung RW,et al.Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations[J].Adv Drug Deliv Rev,2011,63(10/11):943-955.
    [35] Pichon C,Midoux P.Mannosylated and histidylated LPR technology for vaccination with tumor antigen mRNA[J].Methods Mol Biol,2013,969:247-274.
    [36] Li P,Chen S,Jiang Y,et al.Dendritic cell targeted liposomes-protamine-DNA complexes mediated by synthetic mannosylated cholesterol as a potential carrier for DNA vaccine[J].Nanotechnology,2013,24(29):295101.
    [37] Rosalia RA,Cruz LJ,van Duikeren S,et al.CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses[J].Biomaterials,2015,40:88-97.
    [38] Ejaz A,Ammann CG,Werner R,et al.Targeting viral antigens to CD11c on dendritic cells induces retrovirus-specific T cell responses[J].PLoS One,2012,7(9):e45102.
    [39] Ahonen CL,Doxsee CL,McGurran SM,et al.Combined TLR and CD40 triggering induces potent CD8+ T cell expansion with variable dependence on type I IFN[J].J Exp Med,2004,199(6):775-784.
    [40] Manolova V,Flace A,Bauer M,et al.Nanoparticles target distinct dendritic cell populations according to their size[J].Eur J Immunol,2008,38(5):1404-1413.
    [41] Ruff LE,Mahmoud EA,Sankaranarayanan J,et al.Antigen-loaded pH-sensitive hydrogel microparticles are taken up by dendritic cells with no requirement for targeting antibodies[J].Integr Biol(Camb),2013,5(1):195-203.
    [42] Baleeiro RB,Wiesmuller KH,Reiter Y,et al.Topical vaccination with functionalized particles targeting dendritic cells[J].J Invest Dermatol,2013,133(8):1933-1941.
    [43] Saluja SS,Hanlon DJ,Sharp FA,et al.Targeting human dendritic cells via DEC-205 using PLGA nanoparticles leads to enhanced cross-presentation of a melanoma-associated antigen[J].Int J Nanomedicine,2014,9:5231-5246.
    [44] Cruz LJ,Rueda F,Simon L,et al.Liposomes containing NYESO1/tetanus toxoid and adjuvant peptides targeted to human dendritic cells via the Fc receptor for cancer vaccines[J].Nanomedicine(Lond),2014,9(4):435-449.
    [45] Hamdy S,Molavi O,Ma Z,et al.Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity[J].Vaccine,2008,26(39):5046-5057.
    [46] Nikitczuk KP, Schloss RS, Yarmush ML, et al. PLGA-polymer encapsulating tumor antigen and CpG DNA administered into the tumor microenvironment elicits a systemic antigen-specific IFN-gamma response and enhances survival[J].J Cancer Ther,2013,4(1):280-290.
    [47] Mueller M,Reichardt W,Koerner J,et al.Coencapsulation of tumor lysate and CpG-ODN in PLGA-microspheres enables successful immunotherapy of prostate carcinoma in TRAMP mice[J].J Control Release,2012,162(1):159-166.
    [48] Heit A,Schmitz F,Haas T,et al.Antigen co-encapsulated with adjuvants efficiently drive protective T cell immunity[J].Eur J Immunol,2007,37(8):2063-2074.
    [49] Palumbo RN,Nagarajan L,Wang C.Recombinant monomeric CD40 ligand for delivering polymer particles to dendritic cells[J].Biotechnol Prog,2011,27(3):830-837.
    [50] Bourquin C,Anz D,Zwiorek K,et al.Targeting CpG oligonucleotides to the lymph node by nanoparticles elicits efficient antitumoral immunity[J].J Immunol,2008,181(5):2990-2998.
    [51] Machy P,Serre K,Leserman L.Class I-restricted presentation of exogenous antigen acquired by Fcγ receptor-mediated endocytosis is regulated in dendritic cells[J].Eur J Immunol,2000,30(3):848-857.
    [52] Prasad S,Cody V,Saucier-Sawyer JK,et al.Polymer nanoparticles containing tumor lysates as antigen delivery vehicles for dendritic cell-based antitumor immunotherapy[J].Nanomedicine,2011,7(1):1-10.
    [53] Solbrig CM,Saucier-Sawyer JK,Cody V,et al.Polymer nanoparticles for immunotherapy from encapsulated tumor-associated antigens and whole tumor cells[J].Mol Pharm,2007,4(1):47-57.
    [54] Prasad S,Cody V,Saucier-Sawyer JK,et al.Polymer nanoparticles containing tumor lysates as antigen delivery vehicles for dendritic cell-based antitumor immunotherapy[J].Nanomedicine,2011,7(1):1-10.
    [55] Pateinakis P,Pyrpasopoulou A.Targeting the B-cell pathway in lupus nephritis:current evidence and future perspectives[J].Scientific World Journal,2013,2013:745239.
    [56] Ding Q,Chen J,Wei X,et al.RAFTsomes containing epitope-MHC-II complexes mediated CD4+ T cell activation and antigen-specific immune responses[J].Pharm Res,2013,30(1):60-69.
    [57] Boot EP,Koning GA,Storm G,et al.CD134 as target for specific drug delivery to auto-aggressive CD4+ T cells in adjuvant arthritis[J].Arthritis Res Ther,2005,7(3):R604-R615.
    [58] Mezzaroba N,Zorzet S,Secco E,et al.New potential therapeutic approach for the treatment of B-Cell malignancies using chlorambucil/hydroxychloroquine-loaded anti-CD20 nanoparticles[J].PLoS One,2013,8(9):e74216.
    [59] Mao Y,Triantafillou G,Hertlein E,et al.Milatuzumab-conjugated liposomes as targeted dexamethasone carriers for therapeutic delivery in CD74+ B-cell malignancies[J].Clin Cancer Res,2013,19(2):347-356.
    [60] Chen WC,Completo GC,Sigal DS,et al.In vivo targeting of B-cell lymphoma with glycan ligands of CD22[J].Blood,2010,115(23):4778-4786.
    [61] Cheng WW,Allen TM.Targeted delivery of anti-CD19 liposomal doxorubicin in B-cell lymphoma:a comparison of whole monoclonal antibody,Fab′ fragments and single chain Fv[J].J Control Release,2008,126(1):50-58.
    [62] Zhang XY,Lu WY.Recent advances in lymphatic targeted drug delivery system for tumor metastasis[J].Cancer Biol Med,2014,11(4):247-254.
    [63] Flanagan J,Singh H.Microemulsions:a potential delivery system for bioactives in food[J].Crit Rev Food Sci Nutr,2006,46(3):221-237.
    [64] He XW,Liu T,Chen YX,et al.Calcium carbonate nanoparticle delivering vascular endothelial growth factor-C siRNA effectively inhibits lymphangiogenesis and growth of gastric cancer in vivo[J].Cancer Gene Ther,2008,15(3):193-202.
    [65] Yan Z,Zhan C,Wen Z,et al.LyP-1-conjugated doxorubicin-loaded liposomes suppress lymphatic metastasis by inhibiting lymph node metastases and destroying tumor lymphatics[J].Nanotechnology,2011,22(41):415103.
    [66] Feng L,Zhang L,Liu M,et al.Roles of dextrans on improving lymphatic drainage for liposomal drug delivery system[J].J Drug Target,2010,18(3):168-178.
    [67] Tiantian Y,Wenji Z,Mingshuang S,et al.Study on intralymphatic-targeted hyaluronic acid-modified nanoliposome:influence of formulation factors on the lymphatic targeting[J].Int J Pharm,2014,471(1/2):245-257.
    [68] Cobaleda-Siles M,Henriksen-Lacey M,Ruiz DAA,et al.An iron oxide nanocarrier for dsRNA to target lymph nodes and strongly activate cells of the immune system[J].Small,2014,10(24):5054-5067.
    [69] Aji AM,Chacko AJ,Jose S,et al.Lopinavir loaded solid lipid nanoparticles(SLN)for intestinal lymphatic targeting[J].Eur J Pharm Sci,2011,42(1/2):11-18.
    [70] Huang Z,Zhang Z,Zha Y,et al.The effect of targeted delivery of anti-TNF-alpha oligonucleotide into CD169+ macrophages on disease progression in lupus-prone MRL/lpr mice[J].Biomaterials,2012,33(30):7605-7612.
  • 期刊类型引用(17)

    1. 孙佳乐,崔雅璇,张新征,李群. 无创正压通气与经鼻高流量氧疗治疗慢性阻塞性肺疾病急性加重期轻度呼吸衰竭患者的疗效观察. 实用医院临床杂志. 2024(01): 68-71 . 百度学术
    2. 卢丽君,田辉,郑洋,胡汉姣. 紫花牡荆素对脂多糖诱导的BEAS-2B细胞损伤和NF-κB-Keap1-Nrf2/ARE通路的影响. 中国免疫学杂志. 2024(03): 546-550 . 百度学术
    3. 黄武祯,陈斯宁,黎展华. 利金方治疗慢性阻塞性肺疾病的作用机制探析. 今日药学. 2024(08): 636-640 . 百度学术
    4. 薛晴,杨美玲,刘岩明. 比较不同剂量沙美特罗替卡松粉在治疗中重度稳定型慢性阻塞性肺疾病疗效. 罕少疾病杂志. 2024(10): 33-35 . 百度学术
    5. 赵萌,赵育周,赵志娟,霍树芬. T淋巴细胞亚群在慢性阻塞性肺疾病发生、发展中的作用研究进展. 检验医学与临床. 2023(05): 705-709 . 百度学术
    6. 葛进男,张晓风,葛蕾蕾,许晓霞. 早期肺康复对慢性阻塞性肺疾病急性加重期患者的影响. 当代护士(中旬刊). 2023(03): 27-30 . 百度学术
    7. 张文硕,吴常柱. 无创呼吸机联合沙丁胺醇治疗慢性阻塞性肺疾病并发呼吸衰竭的效果及对炎症因子的影响. 系统医学. 2023(06): 19-23 . 百度学术
    8. 郭春明,江露,范有明. 慢性阻塞性肺疾病中西医结合治疗研究进展. 中国药物经济学. 2023(07): 108-113 . 百度学术
    9. 冷安明,杨静,张葵. 桑色素通过抑制MMP9表达改善慢性阻塞性肺疾病. 安徽医科大学学报. 2023(12): 1987-1994 . 百度学术
    10. 刘海波,张敬敏,刘秀兰,王锋,刘明月,李建玲. 驱动压肺保护性通气策略对慢性阻塞性肺疾病大鼠呼吸功能和血液动力学的影响. 医学研究与战创伤救治. 2023(12): 1242-1249 . 百度学术
    11. 贾健,吴建兵,张奕华,黄张建. 羧甲司坦L-精氨酸盐的合成及其对支气管上皮细胞的保护作用. 中国药科大学学报. 2022(02): 171-177 . 本站查看
    12. 韩雪,王婷婷,王惠琴. 沙丁胺醇联合布地奈德雾化吸入对慢性阻塞性肺疾病急性加重期患者气道重塑、炎症介质水平的影响. 临床医学研究与实践. 2022(17): 70-74 . 百度学术
    13. 李明明,宋堃,王亚威. 基于PERMA模式的优质护理在老年慢阻肺患者中的应用观察. 包头医学. 2022(01): 54-56 . 百度学术
    14. 陈建平,黄坤,牛犇. Boehringer Ingelheim关于噻托溴铵的工艺研究进展. 化工管理. 2022(24): 65-67 . 百度学术
    15. 田晨,刘志辉,孟繁荣,李华,何湘蓉,胡锦兴. 香烟烟雾提取物诱导16HBE细胞MUC5AC上调的机制. 实用医学杂志. 2022(18): 2309-2317 . 百度学术
    16. 高文. 辛伐他汀与雷芬那辛治疗慢性阻塞性肺疾病临床疗效及对肺循环阻力的影响对比. 基层医学论坛. 2022(31): 35-38 . 百度学术
    17. 孙宁,于文晓,袁芳. 基于网络药理学和分子对接技术探讨桑梅止咳颗粒治疗COPD的作用机制. 湖南中医药大学学报. 2021(12): 1905-1913 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数:  1291
  • HTML全文浏览量:  1
  • PDF下载量:  3050
  • 被引次数: 32
出版历程
  • 刊出日期:  2015-10-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭