• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

单细胞蛋白定量检测方法研究进展

沈燚昀, 齐谢敏, 宋沁馨, 周国华

沈燚昀, 齐谢敏, 宋沁馨, 周国华. 单细胞蛋白定量检测方法研究进展[J]. 中国药科大学学报, 2015, 46(5): 521-531. DOI: 10.11665/j.issn.1000-5048.20150502
引用本文: 沈燚昀, 齐谢敏, 宋沁馨, 周国华. 单细胞蛋白定量检测方法研究进展[J]. 中国药科大学学报, 2015, 46(5): 521-531. DOI: 10.11665/j.issn.1000-5048.20150502
SHEN Yiyun, QI Xiemin, SONG Qinxin, ZHOU Guohua. Research advances in quantitative detection of single cell protein[J]. Journal of China Pharmaceutical University, 2015, 46(5): 521-531. DOI: 10.11665/j.issn.1000-5048.20150502
Citation: SHEN Yiyun, QI Xiemin, SONG Qinxin, ZHOU Guohua. Research advances in quantitative detection of single cell protein[J]. Journal of China Pharmaceutical University, 2015, 46(5): 521-531. DOI: 10.11665/j.issn.1000-5048.20150502

单细胞蛋白定量检测方法研究进展

基金项目: 江苏省科技支撑计划社会发展项目资助项目(No.BE2012744);江苏省自然科学基金资助项目(No.BK20151445);中国博士后科学基金资助项目(No.2012M512179,No.2013T60962);中央高校基本科研业务费重点资助项目(No.2015ZD008);药物质量与安全预警教育部重点实验室资助项目(No.DQCP2015MS02);江苏高校优势学科建设工程资助项目;江苏省高校“青蓝工程”资助项目

Research advances in quantitative detection of single cell protein

  • 摘要: 蛋白质的存在及表达水平差异可以阐明生物体的生理或病理变化机制,因此蛋白质的定量检测对疾病发生机制研究、疾病诊断和预后评价等具有重要意义。传统的组织水平上的蛋白定量检测反映的是细胞中蛋白质表达量的平均水平,它往往忽略了单个细胞之间存在的差异,而单细胞蛋白定量检测手段则更能真实地反映这种差异。近年来发展了一系列单细胞蛋白定量检测的方法,如微流控技术、微孔技术、光导纤维纳米生物传感器技术、基于活性的荧光探针技术和质谱法等,本文就这些方法的原理、优缺点等进行简要介绍。
    Abstract: Proteins presence and differences of the expression level can clarify the physiological or pathological changes in organisms, so the quantitative detection of proteins is vital for disease mechanism research, diagnosis and prognosis evaluation. Traditional protein quantitation methods at the tissue level reflected the average protein expression in cells, but ignore the differences between individual cells. In contrast, approaches for quantitative detection at single-cell level can better reflect the differences. Recently, a number of approaches for such detection have been proposed, including microfluidics, microwell-based technology, optical fiber nanobiosensor, activity-based probe technology and mass spectrometry. The principles, advantages and drawbacks of these approaches are briefly introduced in this review.
  • [1] Cohen D,Dickerson JA,Whitmore CD,et al.Chemical cytometry:fluorescence-based single-cell analysis[J].Annu Rev Anal Chem(Palo Alto Calif),2008,1:165-190.
    [2] Lecault V,Vaninsberghe M,Sekulovic S,et al.High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays[J].Nat Methods,2011,8(7):581-586.
    [3] Spiller DG,Wood CD,Rand DA,et al.Measurement of single-cell dynamics[J].Nature,2010,465(7299):736-745.
    [4] Zheng XT,Li CM.Single living cell detection of telomerase over-expression for cancer detection by an optical fiber nanobiosensor[J].Biosens Bioelectron,2010,25(6):1548-1552.
    [5] Chattopadhyay PK,Gierahn TM,Roederer M,et al.Single-cell technologies for monitoring immune systems[J].Nat Immunol,2014,15(2):128-135.
    [6] Mu X,Zheng W,Sun J,et al.Microfluidics for manipulating cells[J].Small,2013,9(1):9-21.
    [7] Sims CE,Allbritton NL.Analysis of single mammalian cells on-chip[J].Lab Chip,2007,7(4):423-440.
    [8] Yin H,Marshall D.Microfluidics for single cell analysis[J].Curr Opin Biotechnol,2012,23(1):110-119.
    [9] Borland LM,Kottegoda S,Phillips KS,et al.Chemical analysis of single cells[J].Annu Rev Anal Chem(Palo Alto Calif),2008,1:191-227.
    [10] Whitesides GM.The origins and the future of microfluidics[J].Nature,2006,442(7101):368-373.
    [11] Huang B,Wu H,Bhaya D,et al.Counting low-copy number proteins in a single cell[J].Science,2007,315(5808):81-84.
    [12] Wei W,Shin YS,Ma C,et al.Microchip platforms for multiplex single-cell functional proteomics with applications to immunology and cancer research[J].Genome Med,2013,5(8):75.
    [13] Shin YS,Ahmad H,Shi Q,et al.Chemistries for patterning robust DNA microbarcodes enable multiplex assays of cytoplasm proteins from single cancer cells[J].Chemphyschem,2010,11(14):3063-3069.
    [14] Ma C,Fan R,Ahmad H,et al.A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells[J].Nat Med,2011,17(6):738-743.
    [15] Ahmad H,Sutherland A,Shin YS,et al.A robotics platform for automated batch fabrication of high density,microfluidics-based DNA microarrays,with applications to single cell,multiplex assays of secreted proteins[J].Rev Sci Instrum,2011,82(9):094301.
    [16] Shi Q,Qin L,Wei W,et al.Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells[J].Proc Natl Acad Sci U S A,2012,109(2):419-424.
    [17] Wang J,Tham D,Wei W,et al.Quantitating cell-cell interaction functions with applications to glioblastoma multiforme cancer cells[J].Nano Lett,2012,12(12):6101-6106.
    [18] Deng Y,Zhang Y,Sun S,et al.An integrated microfluidic chip system for single-cell secretion profiling of rare circulating tumor cells[J].Sci Rep,2014,4:7499.
    [19] Bailey RC,Kwong GA,Radu CG,et al.DNA-encoded antibody libraries:a unified platform for multiplexed cell sorting and detection of genes and proteins[J].J Am Chem Soc,2007,129(7):1959-1967.
    [20] Salehi-Reyhani A,Kaplinsky J,Burgin E,et al.A first step towards practical single cell proteomics:a microfluidic antibody capture chip with TIRF detection[J].Lab Chip,2011,11(7):1256-1261.
    [21] Lu Y,Chen JJ,Mu L,et al.High-throughput secretomic analysis of single cells to assess functional cellular heterogeneity[J].Anal Chem,2013,85(4):2548-2556.
    [22] Walt DR.Protein measurements in microwells[J].Lab Chip,2014,14(17):3195-3200.
    [23] Rissin DM,Kan CW,Campbell TG,et al.Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations[J].Nat Biotechnol,2010,28(6):595-599.
    [24] Hughes AJ,Spelke DP,Xu Z,et al.Single-cell western blotting[J].Nat Methods,2014,11(7):749-755.
    [25] Ganau M,Bosco A,Palma A,et al.A DNA-based nano-immunoassay for the label-free detection of glial fibrillary acidic protein in multicell lysates[J].Nanomedicine,2015,11(2):293-300.
    [26] Xu F,Zhao H,Feng X,et al.Single-cell chemical proteomics with an activity-based probe:identification of low-copy membrane proteins on primary neurons[J].Angew Chem Int Ed Engl,2014,53(26):6730-6733.
    [27] Norris JL,Caprioli RM.Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research[J].Chem Rev,2013,113(4):2309-2342.
    [28] Zenobi R.Single-cell metabolomics:analytical and biological perspectives[J].Science,2013,342(6163):1243259.
    [29] Wu M,Singh AK.Single-cell protein analysis[J].Curr Opin Biotechnol,2012,23(1):83-88.
    [30] Mellors JS,Jorabchi K,Smith LM,et al.Integrated microfluidic device for automated single cell analysis using electrophoretic separation and electrospray ionization mass spectrometry[J].Anal Chem,2010,82(3):967-973.
    [31] Bendall SC,Simonds EF,Qiu P,et al.Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum[J].Science,2011,332(6030):687-696.
    [32] Bendall SC,Nolan GP,Roederer M,et al.A deep profiler′s guide to cytometry[J].Trends Immunol,2012,33(7):323-332.
    [33] Ye H,Greer T,Li L.Probing neuropeptide signaling at the organ and cellular domains via imaging mass spectrometry[J].J Proteomics,2012,75(16):5014-5026.
    [34] Delaune A,Cabin-Flaman A,Legent G,et al.50nm-scale localization of single unmodified,isotopically enriched,proteins in cells[J].PLoS One,2013,8(2):e56559.
    [35] Passarelli MK,Ewing AG.Single-cell imaging mass spectrometry[J].Curr Opin Chem Biol,2013,17(5):854-859.
计量
  • 文章访问数:  1082
  • HTML全文浏览量:  3
  • PDF下载量:  2441
  • 被引次数: 0
出版历程
  • 刊出日期:  2015-10-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭