• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

三萜类化合物降血糖活性及其作用机制研究进展

诸夔妞, 吴正凤, 蒋翠花, 操兰洁, 张健, 殷志琦

诸夔妞, 吴正凤, 蒋翠花, 操兰洁, 张健, 殷志琦. 三萜类化合物降血糖活性及其作用机制研究进展[J]. 中国药科大学学报, 2015, 46(6): 764-770. DOI: 10.11665/j.issn.1000-5048.20150622
引用本文: 诸夔妞, 吴正凤, 蒋翠花, 操兰洁, 张健, 殷志琦. 三萜类化合物降血糖活性及其作用机制研究进展[J]. 中国药科大学学报, 2015, 46(6): 764-770. DOI: 10.11665/j.issn.1000-5048.20150622
ZHU Kuiniu, WU Zhengfeng, JIANG Cuihua, CAO Lanjie, ZHANG Jian, YIN Zhiqi. Advances on hypoglycemic activity and mechanism of triterpenoids[J]. Journal of China Pharmaceutical University, 2015, 46(6): 764-770. DOI: 10.11665/j.issn.1000-5048.20150622
Citation: ZHU Kuiniu, WU Zhengfeng, JIANG Cuihua, CAO Lanjie, ZHANG Jian, YIN Zhiqi. Advances on hypoglycemic activity and mechanism of triterpenoids[J]. Journal of China Pharmaceutical University, 2015, 46(6): 764-770. DOI: 10.11665/j.issn.1000-5048.20150622

三萜类化合物降血糖活性及其作用机制研究进展

基金项目: 中央高校基本科研业务费专项资金资助项目(No.ZJ14103);江苏省第九批“六大人才高峰”高层次人才资助项目(No.2012-YY-008);江苏高校优势学科建设工程资助项目

Advances on hypoglycemic activity and mechanism of triterpenoids

  • 摘要: 三萜类化合物在预防糖尿病和降血糖活性方面的研究取得了较大进展。研究发现,三萜类化合物能够通过多种途径降低血糖,包括促进胰岛素分泌,增强胰岛素敏感性,抑制蛋白酪氨酸磷酸酶1B(PTP1B),激活腺苷酸活化蛋白激酶(AMPK)促进糖摄取,减少肝脏糖原分解与糖异生,抑制α-糖苷酶、醛糖还原酶(AR)和二肽基肽酶-4(DPP-4)的活性等。本文对三萜类化合物的降血糖活性及其作用机制进行了综述,为该类化合物降血糖活性的深入研究与开发提供参考。
    Abstract: The research of triterpenoids on hypoglycemic and anti-diabetic activities have made great progress. Findings indicated that triterpenoids could reduce blood glucose via different mechanisms, including increasing insulin secretion, enhancing insulin sensitivity, promoting glucose uptake by activation of AMP-activated protein kinase(AMPK), decreasing glycogenolysis and gluconeogenesis, and inhibiting protein tyrosine phosphates 1B(PTP1B), α-glycosidase, aldose reductase(AR)and dipeptidyl peptidase-4(DPP-4). This article reviews the hypoglycemic effects and mechanisms of triterpenoids, providing the reference for further research and development of triterpenoids.
  • [1] Whiting DR,Guariguata L,Weil C,et al.IDF diabetes atlas:global estimates of the prevalence of diabetes for 2011 and 2030[J].Diabetes Res Clin Pract,2011,94(3):311-321.
    [2] Prabhakar PK,Prasad R,Ali S,et al.Synergistic interaction of ferulic acid with commercial hypoglycemic drugs in streptozotocin induced diabetic rats[J].Phytomedicine,2013,20(6):488-494.
    [3] Zheng GH,Pu HS.The study of treterpenes and their glycosides on antidiabetic activity[J].West China J Pharm Sci(华西药学杂志),2011,26(3):294-297.
    [4] Bickel C,Demaria AF.Bypassing medicine to treat diabetes[J].Science,2008,320(5875):438-440.
    [5] Schuit FC,Huypens P,Heimberg H,et al.Glucose sensing in pancreatic β-cells a model for the study of other glucose-regulated cells in gut,pancreas,and hypothalamus[J].Diabetes,2001,50(1):1-11.
    [6] Leturque A,Brot-Laroche E,Le Gall M.GLUT2 mutations,translocation,and receptor function in diet sugar managing[J].Am J Physiol Endocrinol Metab,2009,296(5):E985-E992.
    [7] Chen K, Yu X, Murao K, et al. Exendin-4 regulates GLUT2 expression via the CaMKK/CaMKIV pathway in a pancreatic β-cell line[J].Metabolism,2011,60(4):579-585.
    [8] Dai C,Brissova M,Hang Y,et al.Islet-enriched gene expression and glucose-induced insulin secretion in human and mouse islets[J].Diabetologia,2012,55(3):707-718.
    [9] Gu J,Li W,Xiao D,et al.Compound K,a final intestinal metabolite of ginsenosides,enhances insulin secretion in MIN6 pancreatic β-cells by upregulation of GLUT2[J].Fitoterapia,2013,87:84-88.
    [10] Guan FY,Gu J,Li W,et al.Compound K protects pancreatic islet cells against apoptosis through inhibition of the AMPK/JNK pathway in type 2 diabetic mice and in MIN6 β-cells[J].Life Sci,2014,107(1):42-49.
    [11] Lee WK,Kao ST,Liu IM,et al.Increase of insulin secretion by ginsenoside Rh2 to lower plasma glucose in Wistar rats[J].Clin Exp Pharmacol Physiol,2006,33(1/2):27-32.
    [12] Park MW,Ha J,Chung SH.20(S)-ginsenoside Rg3 enhances glucose-stimulated insulin secretion and activates AMPK[J].Biol Pharm Bull,2008,31(4):748-751.
    [13] Liu J,He T,Lu Q,et al.Asiatic acid preserves beta cell mass and mitigates hyperglycemia in streptozocin-induced diabetic rats[J].Diabetes Metab Res Rev,2010,26(6):448-454.
    [14] Castro AJG,Frederico MJS,Cazarolli LH,et al.Betulinic acid and 1,25(OH)2 vitamin D 3 share intracellular signal transduction in glucose homeostasis in soleus muscle[J].Int J Biochem Cell Biol,2014,48:18-27.
    [15] Lee J,Yee ST,Kim JJ,et al.Ursolic acid ameliorates thymic atrophy and hyperglycemia in streptozotocin-nicotinamide-induced diabetic mice[J].Chem Biol Interact,2010,188(3):635-642.
    [16] Keller AC,Ma J,Kavalier A,et al.Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro[J].Phytomedicine,2011,19(1):32-37.
    [17] Mueckler M,Thorens B.The SLC2(GLUT)family of membrane transporters[J].Mol Aspects Med,2013,34(2):121-138.
    [18] Liu Q,Chen L,Hu L,et al.Small molecules from natural sources,targeting signaling pathways in diabetes[J].Biochim Biophys Acta,2010,1799(10):854-865.
    [19] Shang W,Yang Y,Zhou L,et al.Ginsenoside Rb1 stimulates glucose uptake through insulin-like signaling pathway in 3T3-L1 adipocytes[J].J Endocrinol,2008,198(3):561-569.
    [20] Jiang S,Ren D,Li J,et al.Effects of compound K on hyperglycemia and insulin resistance in rats with type 2 diabetes mellitus[J].Fitoterapia,2014,95:58-64.
    [21] Li Y,Wang J,Gu T,et al.Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats[J].Toxicol Appl Pharmacol,2014,277(2):155-163.
    [22] Sangeetha K,Shilpa K,Kumari PJ,et al.Reversal of dexamethasone induced insulin resistance in 3T3L1 adipocytes by 3β-taraxerol of Mangifera indica[J].Phytomedicine,2013,20(3):213-220.
    [23] Ardiles AE,González-Rodríguez Á,Núñez MJ,et al.Studies of naturally occurring friedelane triterpenoids as insulin sensitizers in the treatment type 2 diabetes mellitus[J].Phytochemistry,2012,84:116-124.
    [24] Hunter T.Protein kinases and phosphatases:the yin and yang of protein phosphorylation and signaling[J].Cell,1995,80(2):225-236.
    [25] Elchebly M,Payette P,Michaliszyn E,et al.Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene[J].Science,1999,283(5407):1544-1548.
    [26] Zhang YN,Zhang W,Hong D,et al.Oleanolic acid and its derivatives:new inhibitor of protein tyrosine phosphatase 1B with cellular activities[J].Biorg Med Chem,2008,16(18):8697-8705.
    [27] Lin Z,Zhang Y,Zhang Y,et al.Oleanolic acid derivative NPLC441 potently stimulates glucose transport in 3T3-L1 adipocytes via a multi-target mechanism[J].Biochem Pharmacol,2008,76(10):1251-1262.
    [28] Uddin MN,Sharma G,Yang JL,et al.Oleanane triterpenes as protein tyrosine phosphatase 1B(PTP1B)inhibitors from Camellia japonica[J].Phytochemistry,2014,103:99-106.
    [29] Zhang W,Hong D,Zhou Y,et al.Ursolic acid and its derivative inhibit protein tyrosine phosphatase 1B,enhancing insulin receptor phosphorylation and stimulating glucose uptake[J].Biochim Biophys Acta,2006,1760(10):1505-1512.
    [30] Li D,Cao J,Bi X,et al.New dammarane-type triterpenoids from the leaves of Panax notoginseng and their protein tyrosine phosphatase 1B inhibitory activity[J].J Gins Res,2014,38(1):28-33.
    [31] Zeng K,He YN,Yang D,et al.New compounds from acid hydrolyzed products of the fruits of Momordica charantia L.and their inhibitory activity against protein tyrosine phosphatas 1B[J].Eur J Med Chem,2014,81:176-180.
    [32] Kim EK,Park JM,Lim S,et al.Activation of AMP-activated protein kinase is essential for lysophosphatidic acid-induced cell migration in ovarian cancer cells[J].J Biol Chem,2011,286(27):24036-24045.
    [33] Park CE,Kim M,Lee JH,et al.Resveratrol stimulates glucose transport in C2C12 myotubes by activating AMP-activated protein kinase[J].Exp Mol Med,2007,39(2):222.
    [34] Hardie DG,Ross FA,Hawley SA.AMPK:a nutrient and energy sensor that maintains energy homeostasis[J].Nature Reviews Molecular Cell Biology,2012,13(4):251-262.
    [35] Wu N,Zheng B,Shaywitz A,et al.AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1[J].Mol Cell,2013,49(6):1167-1175.
    [36] Tan MJ,Ye JM,Turner N,et al.Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway[J].Chem Biol,2008,15(3):263-273.
    [37] Lee MS,Hwang JT,Kim SH,et al.Ginsenoside Rc,an active component of Panax ginseng,stimulates glucose uptake in C2C12 myotubes through an AMPK-dependent mechanism[J].J Ethnopharmacol,2010,127(3):771-776.
    [38] Lee HM,Lee OH,Kim KJ,et al.Ginsenoside Rg1 promotes glucose uptake through activated AMPK pathway in insulin-resistant muscle cells[J].Phytother Res,2012,26(7):1017-1022.
    [39] Tuan DT,Thu NB,Nhiem NX,et al.Palbinone and triterpenes from Moutan Cortex(Paeonia suffruticosa,Paeoniaceae)stimulate glucose uptake and glycogen synthesis via activation of AMPK in insulin-resistant human HepG2 cells[J].Bioorg Med Chem Lett,2009,19(19):5556-5559.
    [40] Chang CI,Tseng HI,Liao YW,et al. In vivo and in vitro studies to identify the hypoglycaemic constituents of Momordica charantia wild variant WB24[J].Food Chem,2011,125(2):521-528.
    [41] Aiston S,Coghlan MP,Agius L.Inactivation of phosphorylase is a major component of the mechanism by which insulin stimulates hepatic glycogen synthesis[J].Eur J Biochem,2003,270(13):2773-2781.
    [42] Liu J,Wang X,Chen YP,et al.Maslinic acid modulates glycogen metabolism by enhancing the insulin signaling pathway and inhibiting glycogen phosphorylase[J].Chin J Nat Med,2014,12(4):259-265.
    [43] Chen J,Liu J,Zhang L,et al.Pentacyclic triterpenes.Part 3:synthesis and biological evaluation of oleanolic acid derivatives as novel inhibitors of glycogen phosphorylase[J].Bioorg Med Chem Lett,2006,16(11):2915-2919.
    [44] Wen X,Xia J,Cheng K,et al.Pentacyclic triterpenes.Part 5:synthesis and SAR study of corosolic acid derivatives as inhibitors of glycogen phosphorylases[J].Bioorg Med Chem Lett,2007,17(21):5777-5782.
    [45] Wen X,Sun H,Liu J,et al.Naturally occurring pentacyclic triterpenes as inhibitors of glycogen phosphorylase:synthesis,structure-activity relationships,and X-ray crystallographic studies[J].J Med Chem,2008,51(12):3540-3554.
    [46] Cheng K,Zhang P,Liu J,et al.Practical synthesis of bredemolic acid,a natural inhibitor of glycogen phosphorylase[J].J Nat Prod,2008,71(11):1877-1880.
    [47] Zhu P,Bi Y,Xu J,et al.Terpenoids.III:synthesis and biological evaluation of 23-hydroxybetulinic acid derivatives as novel inhibitors of glycogen phosphorylase[J].Bioorg Med Chem Lett,2009,19(24):6966-6969.
    [48] Yuan HD, Quan HY, Kim SJ, et al. Ginsenoside Rg2 induces orphan nuclear receptor SHP gene expression and inactivates GSK3β via AMP-activated protein kinase to inhibit hepatic glucose production in HepG2 cells[J].Chem Biol Interact,2012,195(1):35-42.
    [49] Ramachandran V,Saravanan R.Efficacy of asiatic acid,a pentacyclic triterpene on attenuating the key enzymes activities of carbohydrate metabolism in streptozotocin-induced diabetic rats[J].Phytomedicine,2013,20(3):230-236.
    [50] Da Ros R,Assaloni R,Ceriello A.Postprandial hyperglycemia and diabetic complications[J].Recenti Prog Med,2005,96(9):436-444.
    [51] Ali H,Houghton P,Soumyanath A.α-Amylase inhibitory activity of some Malaysian plants used to treat diabetes;with particular reference to Phyllanthus amarus[J].J Ethnopharmacol,2006,107(3):449-455.
    [52] Fatmawati S,Kondo R,Shimizu K.Structure-activity relationships of lanostane-type triterpenoids from Ganoderma lingzhi as α-glucosidase inhibitors[J].Bioorg Med Chem Lett,2013,23(21):5900-5903.
    [53] Siddique HR,Saleem M.Beneficial health effects of lupeol triterpene:a review of preclinical studies[J].Life Sci,2011,88(7):285-293.
    [54] Ying YM,Zhang LY,Zhang X,et al.Terpenoids with alpha-glucosidase inhibitory activity from the submerged culture of Inonotus obliquus[J].Phytochemistry,2014,108:171-176.
    [55] Hou W,Li Y,Zhang Q,et al.Triterpene acids isolated from Lagerstroemia speciosa leaves as α-glucosidase inhibitors[J].Phytother Res,2009,23(5):614-618.
    [56] Alexiou P,Pegklidou K,Chatzopoulou M,et al.Aldose reductase enzyme and its implication to major health problems of the 21st century[J].Curr Med Chem,2009,16(6):734-752.
    [57] Fatmawati S,Ersam T,Yu H,et al.20(S)-Ginsenoside Rh2 as aldose reductase inhibitor from Panax ginseng[J].Bioorg Med Chem Lett,2014,24(18):4407-4409.
    [58] Duez H,Cariou B,Staels B.DPP-4 inhibitors in the treatment of type 2 diabetes[J].Biochem Pharmacol,2012,83(7):823-832.
    [59] Saleem S,Jafri L,Haq IU,et al.Plants Fagonia cretica L.and Hedera nepalensis K.Koch contain natural compounds with potent dipeptidyl peptidase-4(DPP-4)inhibitory activity[J].J Ethnopharmacol,2014,156:26-32.
    [60] Cheng HL,Kuo CY,Liao YW,et al.EMCD,a hypoglycemic triterpene isolated from Momordica charantia wild variant,attenuates TNF-α-induced inflammation in FL83B cells in an AMP-activated protein kinase-independent manner[J].Eur J Pharmacol,2012,689(1):241-248.
    [61] Wang X,Liu R,Zhang W,et al.Oleanolic acid improves hepatic insulin resistance via antioxidant,hypolipidemic and anti-inflammatory effects[J].Mol Cell Endocrinol,2013,376(1):70-80.
    [62] Gao Y,Yang MF,Su YP,et al.Ginsenoside Re reduces insulin resistance through activation of PPAR-γ pathway and inhibition of TNF-α production[J].J Ethnopharmacol,2013,147(2):509-516.
计量
  • 文章访问数:  1229
  • HTML全文浏览量:  10
  • PDF下载量:  2820
  • 被引次数: 0
出版历程
  • 刊出日期:  2015-12-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭