• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

MCAO大鼠脑缺血再灌注损伤机制的核磁共振代谢组学研究

张天舒, 阮志, 刘霞, 黄瑾, 张乃霞

张天舒, 阮志, 刘霞, 黄瑾, 张乃霞. MCAO大鼠脑缺血再灌注损伤机制的核磁共振代谢组学研究[J]. 中国药科大学学报, 2016, 47(2): 188-198. DOI: 10.11665/j.issn.1000-5048.20160211
引用本文: 张天舒, 阮志, 刘霞, 黄瑾, 张乃霞. MCAO大鼠脑缺血再灌注损伤机制的核磁共振代谢组学研究[J]. 中国药科大学学报, 2016, 47(2): 188-198. DOI: 10.11665/j.issn.1000-5048.20160211
ZHANG Tianshu, RUAN Zhi, LIU Xia, HUANG Jin, ZHANG Naixia. NMR-based metabolomic investigation of regional brain tissue dysfunctions of MCAO rats induced by ischemia[J]. Journal of China Pharmaceutical University, 2016, 47(2): 188-198. DOI: 10.11665/j.issn.1000-5048.20160211
Citation: ZHANG Tianshu, RUAN Zhi, LIU Xia, HUANG Jin, ZHANG Naixia. NMR-based metabolomic investigation of regional brain tissue dysfunctions of MCAO rats induced by ischemia[J]. Journal of China Pharmaceutical University, 2016, 47(2): 188-198. DOI: 10.11665/j.issn.1000-5048.20160211

MCAO大鼠脑缺血再灌注损伤机制的核磁共振代谢组学研究

基金项目: 中国科学院“百人计划”资助项目

NMR-based metabolomic investigation of regional brain tissue dysfunctions of MCAO rats induced by ischemia

  • 摘要: 运用MCAO方法建立了大鼠局灶性脑缺血模型,随后通过开展针对MCAO大鼠的NMR代谢组学研究来阐明缺血再灌注早期缺血半脑脑组织以及对侧半脑脑组织的代谢物组改变和相关联的脑损伤机制。结果表明:脑缺血再灌注后3 h缺血半脑脑组织的不同区域均在一定程度上产生了能量不足(单磷酸腺苷水平下降;尿嘧啶含量升高)、无氧酵解上调(乳酸含量显著升高)、氧化应激(丙二酸、琥珀酸含量上升)、磷脂代谢异常(胆碱水平显著升高;磷酰胆碱和甘油磷酰胆碱含量下降)、神经递质紊乱(谷氨酸含量下降;γ-氨基丁酸、甘氨酸、丙氨酸含量升高)和神经细胞损伤(N-乙酰天冬氨酸含量下降)等应激性变化,而对侧非缺血端半脑脑组织的代谢模式改变总体上与左脑相类似,但发生显著性变化的代谢物的数量明显比左脑少,能量匮乏的程度也比左脑小,研究结果提示在局灶性脑卒中病人治疗过程中,非缺血损伤端同样应该受到关注。
    Abstract: In this paper, an NMR-based metabolomic study was applied to unravel the pathological mechanisms of focal cerebral ischemia at the metabolic level by investigating the metabolic profile changes of regional brain tissues of male rats upon MCAO operation. In our study, to induce ischemic defects, the operation of middle cerebral artery occlusion was applied to rats in the model group. Meanwhile, the sham-operation was subjected to the rats in sham group by following the same surgical procedure as that applied to the model group rats without occlusion. Three hours after the operation, the metabolites from regional brain tissues including cortex, hippocampus and striatum from the ischemic left hemisphere and the non-ischemic right hemisphere of experimental rats were extracted and subjected to NMR. Multivariate data analysis of PCA and OPLS-DA methods were then applied to analyze the NMR data and thus unravel the possible correlations between the metabolic profile changes and the variations in biological pathways of MCAO rats. The obtained metabolomic data demonstrated that the neural cell damages and the systematic metabolic disorders including energy deficiency(the decrease in AMP level and the increase in uridine concentration), up-regulation of anaerobic glycolysis(a significant up-regulation of the lactate level), oxidative stress(the up-regulation of either malonate level or succinate concentration), dysfunction of choline metabolism(the significant up-regulation of choline level and the decrease in both GPC level and phosphorylcholine concentration), neurotransmitter imbalances(the down-regulation of glutamate level and the up-regulation of GABA, glycine and alanine concentration), and neuronal cell damage(a decrease in the NAA level), were induced in the regional brain tissues of ischemic left hemispheres of MCAO rats. Moreover, the patterns of the metabolic variations in the non-ischemic hemispheres of MCAO rats were similar to those in the left ones, although the metabolic disorders in the non-ischemic right hemisphere were much less severe. Our results suggest that close attention should be paid to the non-ischemic cerebral regions in the treatment of patients with focal ischemic stroke.
  • [1] Roger VL,Go AS,Lloyd-Jones DM,et al.Heart disease and stroke statistics-2011 update:a report from the American heart association[J].Circulation,2011,123(4):e18-e209.
    [2] Mozaffarian D,Benjamin EJ,Go AS,et al.Executive summary:heart disease and stroke statistics-2015 update:a mreport from the American heart association[J].Circulation,2015,131(4):434-441.
    [3] Chan PH.Reactive oxygen radicals in signaling and damage in the ischemic brain[J].J Cereb Blood Flow Metab,2001,21(1):2-14.
    [4] Liesz A,Suri-Payer E,Veltkamp C,et al.Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke[J].Nat Med,2009,15(2):192-199.
    [5] Tang HR,Wang YL.Metabonomics:a revolution in progress[J].Prog Biochem Biophys,2006,33(5):401-417.
    [6] Shao F,Liu L,A JY.Gas chromatography time-of-flight mass spectrometry based metabolomic approach to evalutate acute toxicity of triptolide in rats[J].J China Pharm Univ(中国药科大学学报),2014,45(6):703-709.
    [7] Zhang N, Komine-Kobayashi M, Tanaka R, et al. Edaravone reduces early accumulation of oxidative products and sequential inflammatory responses after transient focal ischemia in mice brain[J].Stroke,2005,36(10):2220-2225.
    [8] Ruan Z, Wang HM, Huang XT, et al. A novel caffeoyl triterpene attenuates cerebral ischemic injury with potent anti-inflammatory and hypothermic effects[J].J Neurochem,2015,133(1):93-103.
    [9] Beckonert O, Keun HC, Ebbels TM, et al. Metabolic profiling,metabolomic and metabonomic procedures for NMR spectroscopy of urine,plasma,serum and tissue extracts[J].Nat Protoc,2007,2(11):2692-2703.
    [10] Ding L,Hao F,Shi Z,et al.Systems biological responses to chronic perfluorododecanoic acid exposure by integrated metabonomic and transcriptomic studies[J].J Proteome Res,2009,8(6):2882-2891.
    [11] Fan TWM,Lane AN.Structure-based profiling of metabolites and isotopomers by NMR[J].Prog Nucl Mag Res Sp,2008,52(2/3):69-117.
    [12] Tang H,Wang Y,Nicholson JK,et al.Use of relaxation-edited one-dimensional and two dimensional nuclear magnetic resonance spectroscopy to improve detection of small metabolites in blood plasma[J].Anal Biochem,2004,325(2):260-272.
    [13] Irie M,Fujimura Y,Yamato M,et al.Integrated MALDI-MS imaging and LC-MS techniques for visualizing spatiotemporal metabolomic dynamics in a rat stroke model[J].Metabolomics,2014,10(3):473-483.
    [14] Loffler M,Fairbanks LD,Zameitat E,et al.Pyrimidine pathways in health and disease[J].Trends Mol Med,2005,11(9):430-437.
    [15] Connolly GP, Duley JA. Uridine and its nucleotides: biological actions,therapeutic potentials[J].Trends Pharmacol Sci,1999,20(5):218-225.
    [16] Storey BT,Kayne FJ.Energy-metabolism of Spermatozoa.7.Interactions between lactate,pyruvate and malate as oxidative substrates for rabbit sperm mitochondria[J].Biol Reprod,1978,18(4):527-536.
    [17] Lunt SY,Vander Heiden MG.Aerobic glycolysis:meeting the metabolic requirements of cell proliferation[J].Annu Rev Cell Dev Bi,2011,27:441-464.
    [18] Lin ZY,Xu PB,Yan SK,et al.A metabonomic approach to early prognostic evaluation of experimental sepsis by H-1 NMR and pattern recognition[J].Nmr Biomed,2009,22(6):601-608.
    [19] Magistretti PJ, Pellerin L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging[J].Philos Trans R Soc Lond B Biol Sci,1999,354(1387):1155-1163.
    [20] Chatham JC,Blackband SJ.Nuclear magnetic resonance spectroscopy and imaging in animal research[J].ILAR J,2001,42(3):189-208.
    [21] Caserta MT,Ragin A,Hermida AP,et al.Single voxel magnetic resonance spectroscopy at 3 Tesla in a memory disorders clinic:early right hippocampal NAA/Cr loss in mildly impaired subjects[J].Psychiat Res,2008,164(2):154-159.
    [22] Zeevalk GD,Bernard LP,Sinha C,et al.Excitotoxicity and oxidative stress during inhibition of energy metabolism[J].Dev Neurosci-Basel,1998,20(4/5):444-453.
    [23] Asanuma T,Inanami O,Tabu K,et al.Protection against malonate-induced ischemic brain injury in rat by a cell-permeable peptidic c-Jun N-terminal kinase inhibitor,(L)-HIV-TAT48-57-PP-JBD20,observed by the apparent diffusion coefficient mapping magnetic resonance imaging method[J].Neurosci Lett,2004,359(1/2):57-60.
    [24] Djuricic B,Olson SR,Assaf HM,et al.Formation of free choline in brain tissue during in vitro energy deprivation[J].J Cerebr Blood Flow Metab,1991,11(2):308-313.
    [25] Kozuka M,Iwata N.Changes in levels of monoamines and their metabolites in incompletely ischemic brains of spontaneously hypertensive rats[J].Neurochem Res,1995,20(12):1429-1435.
    [26] Jeter CB,Hergenroeder GW,Ward NH,et al.Human mild traumatic brain injury decreases circulating branched-chain amino acids and their metabolite levels[J].J Neurotraum,2013,30(8):671-679.
    [27] Wagenmakers AJM.Protein and amino acid metabolism in human muscle[J].Adv Exp Med Biol,1998,441307-441319.
    [28] Murin R,Mohammadi G,Leibfritz D,et al.Glial metabolism of isoleucine[J].Neurochem Res,2009,34(1):194-204.
    [29] Banks MA,Porter DW,Martin WG,et al.Ozone-induced lipid-peroxidation and membrane leakage in isolated rat alveolar macrophages-protective effects of taurine[J].J Nutr Biochem,1991,2(6):308-313.
    [30] Jung J,Kim SH,Lee HS,et al.Serum metabolomics reveals pathways and biomarkers associated with asthma pathogenesis[J].Clin Exp Allergy,2013,43(4):425-433.
    [31] Niculescu MD,Zeisel SH.Diet,methyl donors and DNA methylation:interactions between dietary folate,methionine and choline[J].J Nutr,2002,132(8):2333s-2335s.
    [32] Selhub J,Seyoum E,Pomfret EA,et al.Effects of choline deficiency and methotrexate treatment upon liver folate content and distribution[J].Cancer Res,1991,51(1):16-21.
计量
  • 文章访问数:  1123
  • HTML全文浏览量:  1
  • PDF下载量:  2310
  • 被引次数: 0
出版历程
  • 刊出日期:  2016-04-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭