• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

肿瘤的光动力治疗研究进展

董虹, 武瑞雪, 刘佳琦, 黄晴, 周雅, 胡一桥

董虹, 武瑞雪, 刘佳琦, 黄晴, 周雅, 胡一桥. 肿瘤的光动力治疗研究进展[J]. 中国药科大学学报, 2016, 47(4): 377-387. DOI: 10.11665/j.issn.1000-5048.20160401
引用本文: 董虹, 武瑞雪, 刘佳琦, 黄晴, 周雅, 胡一桥. 肿瘤的光动力治疗研究进展[J]. 中国药科大学学报, 2016, 47(4): 377-387. DOI: 10.11665/j.issn.1000-5048.20160401
DONG Hong, WU Ruixue, LIU Jiaqi, HUANG Qing, ZHOU Ya, HU Yiqiao. Advances in cancer photodynamic therapy[J]. Journal of China Pharmaceutical University, 2016, 47(4): 377-387. DOI: 10.11665/j.issn.1000-5048.20160401
Citation: DONG Hong, WU Ruixue, LIU Jiaqi, HUANG Qing, ZHOU Ya, HU Yiqiao. Advances in cancer photodynamic therapy[J]. Journal of China Pharmaceutical University, 2016, 47(4): 377-387. DOI: 10.11665/j.issn.1000-5048.20160401

肿瘤的光动力治疗研究进展

基金项目: 国家“重大新药创制”科技重大科技专项资助项目(No.2014ZX09507005004);国家自然科学基金资助项目(No.81273464);江苏省自然科学基金资助项目(No.BE2015674)

Advances in cancer photodynamic therapy

  • 摘要: 肿瘤光动力治疗(photodynamic therapy,PDT)是一种对恶性肿瘤细胞选择性杀伤并获得临床批准的非侵入性肿瘤治疗方法。该疗法主要原理是利用特定波长的光激发光敏剂,传递能量给氧气进而产生活性氧,造成肿瘤细胞死亡、微血管损伤以及诱导局部免疫等反应。本文针对目前光动力治疗存在的3个主要瓶颈——光动力光源的穿透深度较弱、光敏剂非特异性靶向导致的皮肤毒性以及肿瘤部位乏氧导致的光动力降低,对肿瘤光动力治疗的前沿研究进行综述。
    Abstract: Photodynamic therapy(PDT)is a minimal invasive therapy that have been clinically approved for the cancer treatment with selective cell toxicity. When activated by appropriate wavelength of light, photosensitizers transfer the absorbed photon energy to the surrounding molecular oxygen to generate reactive oxygen species, which result in cell death, vessel damage and immune activation of tumor site. This paper summarize the main challenges and recent solutions for PDT application, such as the low tissue penetration of light, toxicity induced by nonspecific accumulation of skin and poor PDT effect of hypoxia tumor.
  • [1] Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic therapy[J].JNCI Cancer Spectrum,1998,90(12):889-905.
    [2] Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer[J].Nat Rev Cancer,2003,3(5):380-387.
    [3] Castano AP,Demidova,TN,Hamblin MR.Mechanisms in photodynamic therapy:part one-photosensitizers,photochemistry and cellular localization[J].Photodiagn Photodyn Ther,2004,1(4):279-293.
    [4] Lucky SS,Soo KC,Zhang Y.Nanoparticles in photodynamic therapy[J].Chem Rev,2015,115(4):1990-2042.
    [5] Juzeniene A,Nielsen KP,Moan J.Biophysical aspects of photodynamic therapy[J].J Environ Pathol Toxicol Oncol,2006,25(1/2):7-28.
    [6] Henderson BW,Fingar VH.Relationship of tumor hypoxia and response to photodynamic treatment in an experimental mouse tumor[J].Cancer Res,1987,47(12):3110-3114.
    [7] Mitchell JB,McPherson S,DeGraff W,et al.Oxygen dependence of hematoporphyrin derivative-induced photoinactivation of Chinese hamster cells[J].Cancer Res,1985,45(5):2008-2011.
    [8] Dysart JS,Patterson MS.Characterization of photofrinphotobleaching for singlet oxygen dose estimation during photodynamic therapy of MLL cells in vitro[J].Phys Med Biol,2005,50(11):2597-2616.
    [9] Moan J,Berg K,Kvam E,et al.Intracellular localization of photosensitizers[J].Ciba Found Symp,1989,146:95-107;discussion 107-111.
    [10] Mroz P,Yaroslavsky A,Kharkwal GB,et al.Cell death pathways in photodynamic therapy of cancer[J].Cancers,2011,3(2):2516-2539.
    [11] Baluk P,Hashizume H,McDonald DM.Cellular abnormalities of blood vessels as targets in cancer[J].Curr Opin Genet Dev,2005,15(1):102-111.
    [12] Chen B,Pogue BW,Hoopes PJ,et al.Vascular and cellular targeting for photodynamic therapy[J].Crit Rev Eukaryot Gene Expr,2006,16(4):279-305.
    [13] Huang Z,Xu H,Meyers AD,et al.Photodynamic therapy for treatment of solid tumors - potential and technical challenges[J].Technol Cancer Res Treat,2008,7(4):309-320.
    [14] Dolmans DE,Kadambi A,Hill JS,et al.Vascular accumulation of a novel photosensitizer,MV6401,causes selective thrombosis in tumor vessels after photodynamic therapy[J].Cancer Res,2002,62(7):2151-2156.
    [15] Abels C.Targeting of the vascular system of solid tumours by photodynamic therapy(PDT)[J].Photochem Photobiol Sci,2004,3(8):765-771.
    [16] Allison RR, Moghissi K. Photodynamic therapy(PDT): PDT mechanisms[J].Clin Endosc,2013,46(1):24-29.
    [17] van Duijnhoven FH,Aalbers RI,Rovers JP,et al.The immunological consequences of photodynamic treatment of cancer,a literature review[J].Immunobiolog,2003,207(2):105-113.
    [18] Frangioni JV.In vivo near-infrared fluorescence imaging[J].Curr Opin Chem Biol,2003,7(5):626-634.
    [19] Ronald WW,Marwood NE.In Electro-Optics Handbook[M].2nd ed,McGraw Hill:New York,2000;Professional Access Engineering.
    [20] Jiang C,Cheng H,Yuan A,et al.Hydrophobic IR780 encapsulated in biodegradable human serum albumin nanoparticles for photothermal and photodynamic therapy[J].Actabiomaterialia,2015,14:61-69.
    [21] Vijayaraghavan P,Liu CH,Vankayala R,et al.Designing multi-branched gold nanoechinus for NIR light activated dual modal photodynamic and photothermal therapy in the second biological window[J].Adv Mater,2014,26(39):6689-6695.
    [22] Lu T,Shao P,Mathew I,et al.Synthesis and photophysics of benzotexaphyrin:a near-infrared emitter and photosensitizer[J].J Am Chem Soc,2008,130(47):15782-15783.
    [23] Starkey JR, Rebane AK, DrobizhevMA, et al. New two-photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near-IR laser treatment through the body of the host mouse[J].Clin Cancer Res,2008,14:6564-6573.
    [24] Schmitt J,Heitz V,Sour A,et al.Diketopyrrolopyrrole-porphyrin conjugates with high two-photon absorption and singlet oxygen generation for two-photon photodynamic therapy[J].Angew Chem Int Ed Engl,2015,54(1):169-173.
    [25] Gary-Bobo M,Mir Y,Rouxel C,et al.Mannose-functionalized mesoporous silica nanoparticles for efficient two-photon photodynamic therapy of solid tumors[J].Angew Chem Int Ed Engl,2011,50(48):11425-11429.
    [26] Wang C,Tao H,Cheng L,et al.Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles[J].Biomaterials,2011,32(26):6145-6154.
    [27] Idris NM,Gnanasammandhan MK,Zhang J,et al.In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers[J].Nat Med,2012,18(10):1580-1585.
    [28] Lim CK, Heo J, Shin S, et al. Nanophotosensitizers toward advanced photodynamic therapy of cancer[J].Cancer Lett,2013,334(2):176-187.
    [29] Zou X,Yao M,Ma L,et al.X-ray-induced nanoparticle-based photodynamic therapy of cancer[J].Nanomedicine,2014,9(15):2339-2351.
    [30] Ma L,Zou XJ,Bui B,et al.X-ray excited ZnS:Cu,Co afterglow nanoparticles for photodynamic activation[J].Appl Phys Lett,2014,105:013702.
    [31] Ma L,Zou X,Chen W.A new X-ray activated nanoparticle photosensitizer for cancer treatment.[J] J Biomed Nanotechnol,2014,10(8):1501-1508.
    [32] Oh SB,Park HR,Jang YJ,et al.Baicalein attenuates impaired hippocampal neurogenesis and the neurocognitive deficits induced by γ-ray radiation[J].Br J Pharmacol,2013,168(2):421-431.
    [33] Thariat J,Marcy PY,Lagrange JL,et al.Trends in radiation therapy for the treatment of metastatic and oligometastatic disease in 2010[J].Cancer,2010,97(12):1467-1476.
    [34] Kašáková S,Giuliani A,Lacerda S,et al.X-ray-induced radiophotodynamic therapy(RPDT)using lanthanide micelles:Beyond depth limitations[J].Nano Res,2015,8(7):2373-2379.
    [35] Chen H,Wang GD,Chuang YJ,et al.Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment[J].Nano Lett,2015,15(4):2249-2256.
    [36] Chen HY,Rogalski MM,Anker JN.Advances in functional X-ray imaging techniques and contrast agents[J].Phys Chem Chem Phys,2012,14(39):13469-13486.
    [37] Osseni SA,Lechevallier S,Verelst M,et al.Gadolinium oxysulfide nanoparticles as multimodal imaging agents for T 2-weighted MR,X-ray tomography and photoluminescence[J].Nanoscale, 2014,6(1):555-564.doi: 10.1039/c3nr03982j.
    [38] Kotagiri N, Sudlow GP, Akers WJ, et al. Breaking the depth dependency of phototherapy with Cerenkov radiation and low-radiance-responsive nanophotosensitizers[J].Nat Nanotechnol,2015,10(4):370-379.
    [39] Laptev R,Nisnevitch M,Siboni G,et al.Intracellular chemiluminescence activates targeted photodynamic destruction of leukaemic cells[J].Br J Cancer,2006,95(2):189-196.
    [40] Carpenter S,Fehr MJ,Kraus GA,et al.Chemiluminescent activation of the antiviral activity of hypericin:a molecular flashlight[J].Petrich Proc Natl Acad Sci,1994,91(25):12273-12277.
    [41] Theodossiou T,Hothersall JS,Woods EA,et al.Firefly luciferin-activated rose bengal:in vitro photodynamic therapy by intracellular chemiluminescence in transgenic NIH 3T3 cells[J].Cancer Res,2003,63(8):1818-1821.
    [42] Zhang Y,Pang L,Ma C,et al.Small molecule-initiated light-activated semiconducting polymer dots:an integrated nanoplatform for targeted photodynamic therapy and imaging of cancer cells[J].Anal Chem,2014,86(6):3092-3099.
    [43] Hsu CY, Chen CW, Yu HP, et al. Bioluminescence resonance energy transfer using luciferase-immobilized quantum dots for self-illuminated photodynamic therapy[J].Biomaterials,2013,34(4):1204-1212.
    [44] Mei M.Exploration in passive targeting therapy of solid tumor based on the EPR effect(EPR效应在实体瘤被动靶向性治疗中的应用探讨)[D].Beijing:Academy of Military Medical Sciences,2008.
    [45] Mei M,Yuan SJ.EPR effect and treatment strategy of solid tumors[J].Pharm J Chin PLA(解放军药学学报),2008,24(4):345-346.
    [46] Yuan Y,Xu S,Zhang CJ,et al.Dual-targeted activatable photosensitizers with aggregation-induced emission(AIE)characteristics for image-guided photodynamic cancer cell ablation[J].J Mater Chem,2016,4(1):169-176.
    [47] Tian J,Zhou J,Shen Z,et al.A pH-activatable and aniline-substituted photosensitizer for near-infrared cancertheranostics[J].Chem Sci,2015,6(10):5969-5977.
    [48] Fuchs J,Thiele J.The role of oxygen in cutaneous photodynamic therapy[J].Free Radic Biol Med,1998,24(5):835-847.
    [49] Yuan A,Tang X,Qiu X,et al.Activatable photodynamic destruction of cancer cells by NIR dye/photosensitizer loaded liposomes[J].Chem Commun,2015,51(16):3340-3342.
    [50] Cheng Y,Cheng H,Jiang C,et al.Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy[J].Nat Commun,2015,6:8785.
    [51] Castro CI, Briceno JC. Perfluorocarbon-based oxygen carriers:review of products and trials[J].Artif Organs,2010,34(8):622-634.
    [52] Fuchs J,Thiele J.The role of oxygen in cutaneous photodynamic therapy[J].Free Radic Biol Med,1998,24(5):835-847.
    [53] Chen H,Tian J,He W,et al.H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells[J].J Am Chem Soc,2015,137(4):1539-1547.
计量
  • 文章访问数:  1475
  • HTML全文浏览量:  29
  • PDF下载量:  4802
  • 被引次数: 0
出版历程
  • 刊出日期:  2016-08-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭