• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

普朗尼克F-127包裹的三甲基壳聚糖纳米传递系统

郑雅娴, 张吴楠, 何丽萍, 吴蕊男, 山伟, 刘敏, 黄园

郑雅娴, 张吴楠, 何丽萍, 吴蕊男, 山伟, 刘敏, 黄园. 普朗尼克F-127包裹的三甲基壳聚糖纳米传递系统[J]. 中国药科大学学报, 2016, 47(4): 442-447. DOI: 10.11665/j.issn.1000-5048.20160409
引用本文: 郑雅娴, 张吴楠, 何丽萍, 吴蕊男, 山伟, 刘敏, 黄园. 普朗尼克F-127包裹的三甲基壳聚糖纳米传递系统[J]. 中国药科大学学报, 2016, 47(4): 442-447. DOI: 10.11665/j.issn.1000-5048.20160409
ZHENG Yaxian, ZHANG Wunan, HE Liping, WU Ruinan, SHAN Wei, LIU Min, HUANG Yuan. Trimethyl chitosan nanoparticles coated with Pluronic F-127 for oral insulin delivery system[J]. Journal of China Pharmaceutical University, 2016, 47(4): 442-447. DOI: 10.11665/j.issn.1000-5048.20160409
Citation: ZHENG Yaxian, ZHANG Wunan, HE Liping, WU Ruinan, SHAN Wei, LIU Min, HUANG Yuan. Trimethyl chitosan nanoparticles coated with Pluronic F-127 for oral insulin delivery system[J]. Journal of China Pharmaceutical University, 2016, 47(4): 442-447. DOI: 10.11665/j.issn.1000-5048.20160409

普朗尼克F-127包裹的三甲基壳聚糖纳米传递系统

基金项目: 国家自然科学基金资助项目(No.81173010)

Trimethyl chitosan nanoparticles coated with Pluronic F-127 for oral insulin delivery system

  • 摘要: 该研究旨在构建普朗尼克F-127(PF-127)包裹的三甲基壳聚糖(TMC)纳米粒(F-S NPs),以提高TMC纳米粒(S NPs)克服黏液屏障的能力。以胰岛素(INS)为模型药物,采用单因素筛选法优化纳米粒(F-S NPs)的处方,获得粒径为(240.6±6.51)nm、Zeta电位+(10.42±1.60)mV、包封率(43.39±2.83)%、载药量(3.39±0.57)%的纳米粒。分别采用黏蛋白吸附实验和尤斯室实验考察纳米粒克服黏液屏障的能力。用黏液分泌型细胞HT29-MTX-E12考察纳米粒的摄取能力。结果表明,F-S NPs与黏蛋白的亲和能力仅为S NPs的28%,其表观黏液渗透系数为S NPs的2.79倍。F-S NPs的细胞摄取能力分别为游离胰岛素、S NPs的16和1.4倍。PF-127成功包裹于S NPs的表面,显著提高了纳米粒克服黏液屏障和E12细胞的摄取能力。
    Abstract: The purpose of this investigation was to develop Pluronic F-127 coated N-trimethyl chitosan nanoparticles(F-S NPs)of insulin as the model drug and asses their penetration of the mucosal barriers. Single factor screening was used to optimize the formulations of nanoparticles and the nanoparticles were characterized. Their particle size, Zeta potential, encapsulation efficiencies and drug loading were assayed to be(240. 6±6. 51)nm, (10. 42±1. 60)mV, (43. 39±2. 83)% and(3. 39±0. 57)%, respectively. The impact of PF-127 on mucin binding in vitro and nanoparticles′s transport in freshly obtained mucus were also evaluated. The mucin affinity of F-S NPs was significantly reduced when compared to that of the N-trimethyl chitosan nanoparticles(S NPs), i. e. , 28% of the latter. And F-S NPs was found to have an improved mucosal penetrating capability. Mucus-secreting HT29-MTX-E12(E12)cell monolayer was selected to investigate their cellular uptake. F-S NPs exhibited higher penetration coefficient than both free insulin and S NPs in mucus-secreting epithelium cells, i. e. , 16-fold and 1. 4-fold, respectively. Data suggest that F-S NPs be potential carriers to cross mucosal barriers and enhance the cellular uptake of insulin.
  • [1] Chin RL,Martinez R,Garmel G.Gas gangrene from subcutaneous insulin administration[J].Am J Emerg Med,1993,11(6):622-625.
    [2] Bakhru SH,Furtado S,Morello AP,et al.Oral delivery of proteins by biodegradable nanoparticles[J].Adv Drug Deliv Rev,2013,65(6):811-821.
    [3] Smith J,Wood E,Dornish M.Effect of chitosan on epithelial cell tight junctions[J].Pharm Res,2004,21(1):43-49.
    [4] Sonaje K,Lin KJ,Tseng MT,et al.Effects of chitosan-nanoparticle-mediated tight junction opening on the oral absorption of endotoxins[J].Biomaterials,2011,32(33):8712-8721.
    [5] Ensign LM,Cone R,Hanes J.Oral drug delivery with polymeric nanoparticles:the gastrointestinal mucus barriers[J].Adv Drug Deliv Rev,2012,64(6):557-570.
    [6] Cone RA.Barrier properties of mucus[J].Adv Drug Deliv Rev,2009,61(2):75-85.
    [7] Behrens I,Pena AIV,Alonso MJ,et al.Comparative uptake studies of bioadhesive and non-bioadhesive nanoparticles in human intestinal cell lines and rats:the effect of mucus on particle adsorption and transport[J].Pharm Res,2002,19(8):1185-1193.
    [8] Sadeghi AMM,Dorkoosh FA,Avadi MR,et al.Preparation,characterization and antibacterial activities of chitosan,N-trimethyl chitosan(TMC)and N-diethylmethyl chitosan(DEMC)nanoparticles loaded with insulin using both the ionotropic gelation and polyelectrolyte complexation methods[J].Int J Pharm,2008,355(1):299-306.
    [9] Yin L,Ding J,He C,et al.Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery[J].Biomaterials,2009,30(29):5691-5700.
    [10] Mao S,Germershaus O,Fischer D,et al.Uptake and transport of PEG-graft-trimethyl-chitosan copolymer-insulin nanocomplexes by epithelial cells[J].Pharm Res,2005,22(12):2058-2068.
    [11] Xie MF.Evaluation methods of comparability of dissolution curve[J].Chin J Pharm(中国医药工业杂志),2009,40(4):308-311.
    [12] Shan W,Zhu X,Liu M,et al.Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin[J].ACS Nano,2015,9(3):2345-2356.
    [13] Jin Y,Song Y,Zhu X,et al.Goblet cell-targeting nanoparticles for oral insulin delivery and the influence of mucus on insulin transport[J].Biomaterials,2012,33(5):1573-1582.
    [14] Lai SK,Wang YY,Hanes J.Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues[J].Adv Drug Deliv Rev,2009,61(2):158-171.
计量
  • 文章访问数:  1239
  • HTML全文浏览量:  3
  • PDF下载量:  1737
  • 被引次数: 0
出版历程
  • 刊出日期:  2016-08-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭