• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

法尼醇X受体拮抗剂的研究进展

甘侠, 年四昀, 王国平

甘侠, 年四昀, 王国平. 法尼醇X受体拮抗剂的研究进展[J]. 中国药科大学学报, 2016, 47(5): 521-530. DOI: 10.11665/j.issn.1000-5048.20160503
引用本文: 甘侠, 年四昀, 王国平. 法尼醇X受体拮抗剂的研究进展[J]. 中国药科大学学报, 2016, 47(5): 521-530. DOI: 10.11665/j.issn.1000-5048.20160503
GAN Xia, NIAN Siyun, WANG Guoping. Advances in the development of farnesoid X receptor antagonists[J]. Journal of China Pharmaceutical University, 2016, 47(5): 521-530. DOI: 10.11665/j.issn.1000-5048.20160503
Citation: GAN Xia, NIAN Siyun, WANG Guoping. Advances in the development of farnesoid X receptor antagonists[J]. Journal of China Pharmaceutical University, 2016, 47(5): 521-530. DOI: 10.11665/j.issn.1000-5048.20160503

法尼醇X受体拮抗剂的研究进展

基金项目: 上海市科学技术委员会“创新行动计划”生物医药领域科技成果转化应用项目资助项目(No.16431903900)

Advances in the development of farnesoid X receptor antagonists

  • 摘要: 法尼醇X受体(FXR)属于核受体超家族一员,在胆汁酸、三酰甘油、葡萄糖等的动态平衡中发挥重要作用。FXR拮抗剂可通过提高胆固醇7α-羟化酶(CYP7A1)的活性而促进总胆固醇向胆汁酸转化,同时调节相关靶基因降低三酰甘油、低密度脂蛋白以及升高高密度脂蛋白水平。因此,FXR拮抗剂有望成为治疗高脂血症的新型药物。近年来,FXR拮抗剂的研究取得了较大进展,已获得多种结构类型的FXR拮抗剂。本文就近年来报道的FXR拮抗剂进行综述。
    Abstract: Farnesoid X receptor(FXR), a member of the nuclear receptor superfamily, plays an important role on the regulating bile acid, lipid and glucose homeostasis. FXR antagonist can stimulate the conversion of total cholesterol into bile acid by improving the activity of CYP7A1. It can also reduce the content of triglyceride, low-density lipoprotein and increase that of high-density lipoprotein by regulating the relevant target genes. Considering the above facts, FXR antagonist is expected to become a potential drug to treat hyperlipidemia. In recent years, great progress has been made in the research on FXR antagonists with their various structural types having been obtained. This article introduces natural and synthetic FXR antagonists reported in recent years.
  • 草珊瑚(Sarcandra glabra)为金粟兰科(Chloranthaceae)草珊瑚属植物,在我国主要分布于南部地区,具有清热凉血,活血消斑,祛风通络的功效,是用于治疗炎症性疾病、风湿关节痛的传统中药[1]。现代药理学研究表明,草珊瑚具有免疫调节[2]、抗炎[3]以及抗肿瘤[4]活性。近些年来,草珊瑚及其提取物在食品以及化妆品等行业的需求也在不断地增长[5]。本课题组围绕草珊瑚中的特征性成分进行了诸多探索[67]。乌药烷倍半萜及其聚合物以其独特的3/5/6环结构、多样的聚合方式以及良好的生物活性也被认为是草珊瑚中最有代表性的化合物[89]。目前对于草珊瑚的化学成分的研究主要集中于极性较小的萜类成分,对于草珊瑚提取物中的大极性成分,特别是苷类成分研究较少[10]

    为了阐明草珊瑚作为常用中药的物质基础,进一步深入研究其中的有效成分。本研究对新鲜草珊瑚叶醇提物乙酸乙酯萃取后水部位进行了系统的研究。从中分离鉴定了8个极性较大的萜苷类化合物和2个迷迭香酸衍生物,分别为sarcaglaboside C (1)、sarcaglaboside D (2)、byzantionoside B (3)、lauroside E (4)、(4Z)-4-[(3S)-3-(β-D-glucopyranosyloxy)butylidene]-3,5,5-trimethyl-2-cyclohexen-1-one (5)、dihydrovomifoliol-O-β-D-glucopyranoside (6)、(+)-abscisyl-β-D-glucopyranoside (7)、9ξ-O-β-D-glucopyranosyloxy-5-megastigmen-4-one (8)、rosmarinic acid methyl ester (9)、methyl isorinate (10)。其中,化合物3~58~9均首次从草珊瑚中分离得到。

    草珊瑚地上部分(约51.5 kg)采自福建省三明市,由中国药科大学生药学教研室张勉教授鉴定为金粟兰科草珊瑚属草珊瑚[Sarcandra glabra (Thunb.) Nakai],凭证标本(202106)存放于中国药科大学中药学院天然药物化学教研室。

    1260/1100分析型高效液相色谱仪、G6520B Q-TOF质谱仪(美国安捷伦公司);制备型高效液相色谱仪、紫外光谱仪(日本岛津公司);AV-600型核磁共振仪(美国布鲁克公司);200~300目硅胶,GF254硅胶(青岛海洋化工有限公司);MCI树脂(三菱化学公司);RP-C18反相柱色谱填料(上海月旭科技公司);Sephadex LH-20(英国GE healthcare Bio-Sciences AB公司);氘代试剂(美国剑桥同位素实验室);所用试剂均为分析纯或色谱纯。

    新鲜的草珊瑚地上部分(51.5 kg),粉碎,用3倍量的85%乙醇回流提取3次,每次3 h。提取液减压浓缩后得到粗浸膏(1553 g)。取适量水使之混悬,依次用2倍量的乙酸乙酯进行萃取,分别得到水部位(731.2 g)和乙酸乙酯部位(545.3 g)。水部位分别经大孔树脂柱色谱粗分段,用乙醇-水(0︰1→1︰0)梯度洗脱,得到5个馏分(Fr. A-E)。对馏分Fr. B以及Fr. C采用硅胶柱色谱、MCI柱色谱、凝胶柱色谱、制备液相色谱等分离方法,共得到10个化合物。其中,在馏分Fr. B中分离得到化合物15~10,在馏分Fr. B中分离得到化合物2~4。化合物1~10 的结构式见图1

    Figure  1.  Chemical structures of compounds 1-10

    化合物1  白色无定形粉末,(+)-HR-ESI-MS m/z 433.1851 [M+Na]+。分子式为C21H30O8。其1H NMR谱图显示了1组葡萄糖基信号,2个甲基单峰信号;5个烯氢信号;1个连氧取代氢信号。13C NMR谱图显示1个酯羰基碳信号,3组碳碳双键信号,1个缩醛碳信号。结合以上信息分析该化合物为榄香烷倍半萜糖苷类化合物。具体的核磁数据如下:1H NMR (600 MHz, MeOD) δ: 5.83 (1H, m, H-1), 4.99 (1H, m, H-2α), 5.01 (1H, m, H-2β), 5.06 (1H, m, H-3α), 5.40 (1H, m, H-3β), 2.34 (1H, dd, J=12.2 Hz, 3.2 Hz, H-5), 2.81 (1H, dd, J=14.4 Hz, 4.2Hz, H-6α), 2.72 (1H, t, J=13.9 Hz, H-6β), 4.92 (1H, m, H-8), 1.36 (1H, t, J=12 Hz, H-9α), 2.14 (1H, dd, J =12.1 Hz, 6.1Hz, H-9β), 1.80 (1H, s, H3-13), 1.21 (1H, s, H3-14), 4.08 (1H, d, J=13 Hz, H-15α), 4.29 (1H, d, J=13 Hz, H-15β), 4.25 (1H, d, J=7.8 Hz, H-1′), 3.34 (1H, t, J=8.9 Hz, H-2′), 3.27 (1H, d, J=8.7 Hz, H-3′), 3.24 (1H, ddd, J=9.6Hz, 5.7Hz, 2.2Hz, H-4′), 3.20 (1H, dd, J=9.2 Hz, 7.9 Hz, H-5′), 3.66 (1H, dd, J=11.9 Hz, 5.5 Hz, H-6′α), 3.86 (1H, dd, J=11.8 Hz, 2.3 Hz, H-6′β); 13C NMR (150 MHz, MeOD) δ: 146.7 (C-1), 111.2 (C-2), 119.0 (C-3), 145.9 (C-4), 55.8 (C-5), 27.9 (C-6), 163.8 (C-7), 78.4 (C-8), 45.6 (C-9), 40.6 (C-10), 119.2 (C-11), 176.0 (C-12), 6.7 (C-13), 15.3 (C-14), 73.3 (C-15), 102.9 (C-1′), 73.8 (C-2′), 76.8 (C-3′), 70.3 (C-4′), 76.6 (C-5′), 61.4 (C-6′)。该化合物的波谱数据与文献[11]报道的基本一致,故鉴定化合物1为sarcaglaboside C。

    化合物2  白色无定形粉末,(+)-HR-ESI-MS m/z 565.2284 [M+Na]+。分子式为C26H38O121H NMR (600 MHz, MeOD) δ: 5.84 (1H, m, H-1), 5.02 (1H, m, H-2α), 5.02 (1H, m, H-2β), 5.02 (1H, m, H-3α), 5.42 (1H, m, H-3β), 2.73 (1H, t, J=13.9 Hz, H-5), 2.86 (1H, dd, J=14.4 Hz, 4.1 Hz, H-6α), 2.34 (1H, dd, J=13.4 Hz, 4 Hz, H-6β), 4.92 (1H, m, H-8), 1.38 (1H, t, J=12 Hz, H-9α), 2.16 (1H, dt, J=13.5 Hz, 6.7 Hz, H-9β), 1.82 (1H, s, H3-13), 1.23 (1H, s, H3-14), 4.10 (1H, d, J=12.9 Hz, H-15α), 4.26 (1H, m, H-15β), 4.27 (1H, m, H-1′), 3.21 (1H, m, H-2′), 3.37 (1H, m, H-3′), 3.27 (1H, t, J=9.3 Hz, H-4′), 3.37 (1H, m, H-5′), 3.40 (1H, m, H-6′α), 3,96 (1H, m, H-6′β), 4.93 (1H, m, H-1′′), 3.78 (1H, d, J=9.5 Hz, H-2′′), 3.61 (1H, dd, J=11.3 Hz, 6.5 Hz, H-4′′α), 3.91 (1H, d, J=2.5 Hz, H-4′′β), 3.59 (1H, br.s, H-5′′α), 3.59 (1H, br.s, H-5′′β); 13C NMR (150 MHz, MeOD) δ: 147.3 (C-1), 111.8 (C-2), 114.7 (C-3), 146.3 (C-4), 54.4 (C-5), 28.4 (C-6), 164.5 (C-7), 79.7 (C-8), 46.2 (C-9), 41.2 (C-10), 119.7 (C-11), 176.5 (C-12), 7.3 (C-13), 15.9 (C-14), 74.3 (C-15), 103.5 (C-1′), 74.1 (C-2′), 77.2 (C-3′), 70.9 (C-4′), 76.2 (C-5′), 67.9 (C-6′), 110.1 (C-1′′), 77.2 (C-2′′), 79.0 (C-3′′), 74.1 (C-4′′), 64.6 (C-5′′)。该化合物的波谱数据与文献[11]报道的基本一致,故鉴定化合物2为sarcaglaboside D。

    化合物3  黄色油状物,(+)-HR-ESI-MS m/z 395.2214 [M+Na]+。分子式为C19H32O7。其1H NMR谱图显示了1组葡萄糖基信号,3个甲基单峰信号;1个甲基双峰信号,1个烯氢信号,1个连氧取代氢信号。13C NMR谱图显示1个酮羰基碳信号,1组碳碳双键信号,1个缩醛碳信号。结合以上信息分析该化合物为紫罗兰酮型倍半萜糖苷类化合物。具体的核磁数据如下:1H NMR (600 MHz, MeOD) δ: 1.98 (1H, m, H-2α), 2.46 (1H, d, J=17.4 Hz, H-2β), 5.81 (1H, s, H-4), 1.98 (1H, m, H-6), 1.50 (1H, ddd, J=19.2 Hz, 9.6 Hz, 4.8 Hz, H-7α), 1.98 (1H, m, H-7β), 1.65 (1H, m, H-8α), 1.65 (1H, m, H-8β), 3.91 (1H, m, H-9), 1.19 (1H, d, J=6.2 Hz, H-10), 1.00 (1H, s, H3-11), 1.09 (1H, s, H3-12), 2.05 (1H, s, H3-13), 4.32 (1H, t, J=9.5 Hz, H-1′), 3.14 (1H, t, J=8.5 Hz, H-2′), 3.64 (1H, dt, J=15.1 Hz, 7 Hz, H-3′), 3.35 (1H, t, J=8.4 Hz, H-4′), 3.27 (1H, m, H-5′), 3.89 (1H, m, H-6′α), 3.83 (1H, m, H-6′β); 13C NMR (150 MHz, MeOD) δ: 46.7 (C-1), 36.6 (C-2), 201.0 (C-3), 124.0 (C-4), 168.7 (C-5), 51.0 (C-6), 36.4 (C-7), 35.9 (C-8), 70.5 (C-9), 23.6 (C-10), 25.4 (C-11), 26.1 (C-12), 18.5 (C-13), 100.7 (C-1′), 76.8 (C-2′), 73.8 (C-3′), 76.5 (C-4′), 74.2 (C-5′), 61.6 (C-6′)。该化合物的波谱数据与文献[12]报道的基本一致,故鉴定化合物3为byzantionoside B。

    化合物4  黄色油状物,(+)-HR-ESI-MS m/z 411.2116 [M+Na]+。分子式为C19H32O81H NMR (600 MHz, MeOD) δ: 2.05 (1H, m, H-2α), 2.46 (1H, d, J=17.4 Hz, H-2β), 5.81 (1H, s, H-4), 1.98 (1H, m, H-6), 1.50 (1H, m, H-7), 1.65 (1H, m, H-8α), 1.65 (1H, m, H-8β), 3.87 (1H, m, H-9), 1.19 (1H, d, J=6.2 Hz, H-10), 1.00 (1H, s, H3-11), 1.09 (1H, s, H3-12), 4.19 (1H, dd, J=15.6 Hz, 2 Hz, H-13), 4.36 (1H, dd, J=15.6 Hz, 2 Hz, H-13), 4.32 (1H, t, J=9.5 Hz, H-1′), 3.14 (1H, t, J=5.8 Hz, H-2′), 3.27 (1H, m, H-3′), 3.27 (1H, m, H-4′), 3.35 (1H, m, H-5′), 3.64 (1H, dp, J=15.1 Hz, 7 Hz, 6.4 Hz, H-6′α), 3.87 (1H, m, H-6′β); 13C NMR (150 MHz, MeOD) δ: 36.4 (C-1), 51.0 (C-2), 201.0 (C-3), 124.0 (C-4), 168.7 (C-5), 46.7 (C-6), 23.6 (C-7), 36.6 (C-8), 74.2 (C-9), 18.5 (C-10), 25.4 (C-11), 26.1 (C-12), 74.2 (C-13), 100.7 (C-1′), 73.8 (C-2′), 76.8 (C-3′), 70.5 (C-4′), 76.5 (C-5′), 61.5 (C-6′)。 该化合物的波谱数据与文献[13]报道的基本一致,故鉴定化合物4为lauroside E。

    化合物5  黄色油状物,(+)-HR-ESI-MS m/z 393.2136 [M+Na]+。分子式为C19H32O71H NMR (600 MHz, MeOD) δ: 2.66 (1H, dd, J=17.3 Hz, 11.6 Hz, 6.7 Hz, H-2α), 2.66 (1H, dd, J=17.3 Hz, 11.6 Hz, 6.7 Hz, H-2β), 5.86 (1H, s, H-4), 6.34 (1H, d, J=6.4 Hz, H-7), 2.31 (1H, d, J=8.6 Hz, H-8α), 2.31 (1H, d, J=8.6 Hz, H-8β), 4.35 (1H, d, J=7.8 Hz, H-9), 1.28 (1H, d, J=2.2 Hz, H-10), 1.25 (1H, s, H3-11), 1.25 (1H, s, H3-12), 2.11 (1H, s, H3-13), 4.36 (1H, m, H-1′), 4.03 (1H, m, H-2′), 3.26 (1H, dt, J=11.7 Hz, 6.5 Hz, H-3′), 3.15 (1H, m, H-4′), 3.35 (1H, m, H-5′), 3.84 (1H, m, H-6′α), 3.98 (1H, m, H-6′β); 13C NMR (150 MHz, MeOD) δ: 53.2 (C-1), 37.8 (C-2), 200.8 (C-3), 124.0 (C-4), 157.9 (C-5), 141.7 (C-6), 134.2 (C-7), 37.2 (C-8), 76.7 (C-9), 21.3 (C-10), 27.7 (C-11), 27.7 (C-12), 18.7 (C-13), 101.1 (C-1′), 73.7 (C-2′), 76.6 (C-3′), 70.5 (C-4′), 74.3 (C-5′), 61.7 (C-6′)。该化合物的波谱数据与文献[14]报道的基本一致,故鉴定化合物5为(4Z)-4-[(3S)-3-(β-D-glucopyranosyloxy)butylidene]-3,5,5-trimethyl-2-cyclohexen-1-one。

    化合物6  黄色油状物,(+)-HR-ESI-MS m/z 411.2116 [M+Na]+。分子式为C19H32O81H NMR (600 MHz, MeOD) δ: 2.61 (1H, d, J=12 Hz, H-2α), 2.15 (1H, d, J=12 Hz, H-2β), 5.83 (1H, s, H-4), 2.15 (1H, d, J=12 Hz, H-7α), 1.82 (1H, m, H-7β), 1.79 (1H, m, H-8α), 1.49 (1H, tt, J=12.9 Hz, 4.5 Hz, H-8β), 4.07 (1H, m, H-9), 1.17 (1H, d, J=6.2 Hz, H-10), 1.02 (1H, s, H3-11), 1.10 (1H, s, H3-12), 2.04 (1H, s, H3-13), 4.36 (1H, m, H-1′), 3.13 (1H, dd, J=9.2 Hz, 7.8 Hz, H-2′), 3.81 (1H, q, J=6 Hz, H-3′), 3.26 (1H, m, H-4′), 3.26 (1H, m, H-5′), 3.85 (1H, dd, J=11.6 Hz, 5.3 Hz, H-6′α), 3.34 (1H, m, H-6′β); 13C NMR (150 MHz, MeOD) δ: 42.0 (C-1), 50.2 (C-2), 200.2 (C-3), 125.8 (C-4), 170.9 (C-5), 78.4 (C-6), 34.0 (C-7), 32.7 (C-8), 75.3 (C-9), 20.9 (C-10), 23.8 (C-11), 23.3 (C-12), 19.2 (C-13), 101.4 (C-1′), 74.3 (C-2′), 77.0 (C-3′), 70.9 (C-4′), 77.3 (C-5′), 62.0 (C-6′)。该化合物的波谱数据与文献[15]报道的基本一致,故鉴定化合物6为dihydrovomifoliol-O-β-D-glucopyranoside。

    化合物7  黄色油状物,(+)-HR-ESI-MS m/z 459.1917 [M+Na]+。分子式为C21H30O91H NMR (600 MHz, MeOD) δ: 2.21 (1H, d, J=16.9 Hz, H-2α), 2.56 (1H, d, J=16.9 Hz, H-2β), 5.96 (1H, s, H-4), 6.35 (1H, d, J=16.1 Hz, H-7), 7.83 (1H, d, J=16.1 Hz, H-8), 5.84 (1H, s, H-10), 1.09 (1H, s, H3-12), 2.04 (1H, s, H3-13), 2.04 (1H, br.s, H3-14), 1.95 (1H, br.s, H3-15), 5.52 (1H, d, J=8.2 Hz, H-1′), 3.78 (1H, q, J=6.1 Hz, H-2′), 3.27 (1H, m, H-3′), 3.43 (1H, m, H-4′), 3.43 (1H, m, H-5′), 3.86 (1H, dd, J=12.1 Hz, 2.1 Hz, H-6′α), 3.71 (1H, m, H-6′β); 13C NMR (150 MHz, MeOD) δ: 41.5 (C-1), 49.2 (C-2), 199.5 (C-3), 126.3 (C-4), 152.2 (C-5), 77.4 (C-6), 137.9 (C-7), 127.8 (C-8), 128.5 (C-9), 116.7 (C-10), 164.4 (C-11), 18.1 (C-12), 18.1 (C-13), 22.2 (C-14), 19.9 (C-15), 94.0 (C-1′), 69.7 (C-2′), 76.7 (C-3′), 72.6 (C-4′), 67.8 (C-5′), 61.0 (C-6′)。该化合物的波谱数据与文献[16]报道的基本一致,故鉴定化合物7为 (+)-abscisyl-β-D-glucopyranoside。

    化合物8  黄色油状物,(+)-HR-ESI-MS m/z 395.2214 [M+Na]+。分子式为C19H32O71H NMR (600 MHz, MeOD) δ: 1.81 (1H, m, H-2α), 1.81 (1H, m, H-2β), 2.44 (1H, dd, J=7.5 Hz, 4.2 Hz, H-3α), 2.44 (1H, dd, J=7.5 Hz, 4.2 Hz, H-3β), 2.54 (1H, m, H-7α), 2.31 (1H, m, H-7β), 1.68 (1H, m, H-8α), 1.68 (1H, m, H-8β), 3.96 (1H, tt, J=7 Hz, 3.4 Hz, H-9), 1.76 (1H, s, H-10), 1.20 (1H, s, H3-11), 1.20 (1H, s, H3-12), 1.23 (1H, d, J=6.2 Hz, H-13), 4.35 (1H, d, J=7 Hz, H-1′), 3.16 (1H, m, H-2′), 3.28 (1H, m, H-3′), 3.31 (1H, m, H-4′), 3.28 (1H, m, H-5′), 3.88 (1H, ddd, J=11.4 Hz, 7 Hz, 1.4 Hz, H-6′α), 3.67 (1H, m, H-6′β); 13C NMR (150 MHz, MeOD) δ: 36.7 (C-1), 37.6 (C-2), 36.4 (C-3), 200.7 (C-4), 132.7 (C-5), 167.9 (C-6), 27.1 (C-7), 34.2 (C-8), 71.0 (C-9), 10.9 (C-10), 26.3 (C-11), 26.3 (C-12), 18.9 (C-13), 101.4 (C-1′), 74.9 (C-2′), 77.0 (C-3′), 74.3 (C-4′), 77.4 (C-5′), 62.1 (C-6′)。该化合物的波谱数据与文献[17]报道的基本一致,故鉴定化合物8为9ξ-O-β-D-glucopyranosyloxy-5-megastigmen-4-one。

    化合物9  白色方晶,(+)-HR-ESI-MS m/z 397.3121 [M+Na]+。分子式为C19H18O81H NMR (600 MHz, MeOD) δ: 7.05 (1H, d, J=2.1 Hz, H-2), 6.96 (1H, dd, J=8.2 Hz, 2 Hz, H-5), 6.78 (1H, d, J=8.1 Hz, H-6), 7.55 (1H, d, J=15.9 Hz, H-7), 6.26 (1H, d, J=15.9 Hz, H-8), 6.73 (2H, m, H-2′, H-6′), 6.57 (1H, dd, J=8.1 Hz, 2 Hz, H-5′), 3.04 (1H, qd, J=14.3 Hz, 6.4 Hz, H2-7′), 5.19 (1H, dd, J=7.7 Hz, 5.1 Hz, H-8′), 3.70 (1H, s, H3-OCH3); 13C NMR (150 MHz, MeOD) δ: 126.1 (C-1), 114.9 (C-2), 148.6 (C-3), 146.6 (C-4), 121.8 (C-5), 116.1 (C-6), 144.8 (C-7), 112.7 (C-8), 166.9 (C-9), 127.3 (C-1′), 115.1 (C-2′), 145.5 (C-3′), 144.8 (C-4′), 113.8 (C-5′), 120.4 (C-6′), 36.5 (C-7′), 73.3 (C-8′), 170.8 (C-9′), 51.3 (C-OCH3)。该化合物的波谱数据与文献[18]报道的基本一致,故鉴定化合物9为rosmarinic acid methyl ester。

    化合物10  白色方晶,(+)-HR-ESI-MS m/z 381.1117 [M+Na]+。分子式为C19H18O71H NMR (600 MHz, MeOD) δ: 7.06 (1H, d, J=2.1 Hz, H-2), 6.96 (1H, dd, J=8.2 Hz, 2 Hz, H-5), 6.81 (1H, d, J=8.1 Hz, H-6), 7.56 (1H, d, J=15.9 Hz, H-7), 6.27 (1H, d, J=15.9 Hz, H-8), 7.10 (2H, m, H-2′, H-6′), 6.75 (2H, dd, J=8.1 Hz, 2 Hz, H-3′, H-5′), 3.11 (1H, m, H2-7′), 5.22 (1H, dd, J=7.7 Hz, 5.1 Hz, H-8′), 3.71 (1H, s, H3-OCH3); 13C NMR (150 MHz, MeOD) δ: 126.2 (C-1), 113.9 (C-2), 148.6 (C-3), 146.6 (C-4), 121.8 (C-5), 112.7 (C-6), 156.0 (C-7), 122.3 (C-8), 166.9 (C-9), 130.1 (C-1′), 115.1 (C-2′, C-6′), 114.9 (C-3′, C-5′), 145.4 (C-4′), 36.3 (C-7′), 73.3 (C-8′), 170.8 (C-9′), 51.3 (C-OCH3)。该化合物的波谱数据与文献[19]报道的基本一致,故鉴定化合物10为methyl isorinate。

    草珊瑚中含有结构丰富的化合物,包括酚酸类,以乌药烷倍半萜及其多聚体组成的萜类,黄酮类以及香豆素类。本研究以草珊瑚地上部分的水萃取层为研究对象,系统地研究了其中的化学成分。从中发现了2个榄香烷糖苷类化合物,6个紫罗兰酮糖苷类化合物以及2个酚酸类化合物。上述化合物都具有较大的极性。其中,化合物3~58~9首次从草珊瑚中分离得到。这些化合物的发现有助于丰富草珊瑚植物中化合物的类型,有利于对草珊瑚作为常用中药含有的有效成分的理解,并为后续药理活性研究提供了重要的物质基础。基于草珊瑚用于治疗炎症性疾病的经验,后续可以对分离得到的上述化合物进行抗炎活性研究。

  • [1] Forman BM, Goode E, Chen J, et al. Identification of a nuclear receptor that is activated by farnesol metabolites[J].Cell,1995,81(5):687-693.
    [2] Makishima M, Okamoto AY, Repa JJ, et al. Identification of a nuclear receptor for bile acids[J].Science,1999,284(5418):1362-1365.
    [3] Mazuy C,Helleboid A,Staels B,et al.Nuclear bile acid signaling through the farnesoid X receptor[J].Cell Mol Life Sci,2015,72(9):1631-1650.
    [4] Fiorucci S,Rizzo G,Donini A,et al.Targeting farnesoid X receptor for liver and metabolic disorders[J].Trends Mol Med, 2007,13(7):298-309.
    [5] Amano Y, Shimada M, Miura S, et al. Effects of a farnesoid X receptor antagonist on hepatic lipid metabolism in primates[J].Eur J Pharmacol,2014,723:108-115.
    [6] Urizar NL,Liverman AB,Dodds DT,et al.A natural product that lowers cholesterol as an antagonist ligand for FXR[J].Science,2002,296(5573):1703-1706.
    [7] Cui J, Huang L, Zhao A, et al. Guggulsterone is a farnesoid X receptor antagonist in coactivator association assays but acts to enhance transcription of bile salt export pump[J].J Biol Chem,2003,278(12):10214-10220.
    [8] Burris TP,Montrose C,Houck KA,et al.The hypolipidemic natural product guggulsterone is a promiscuous steroid receptor ligand[J].Mol Pharmacol,2005,67(3):948-954.
    [9] Carter BA,Taylor OA,Prendergast DR,et al.Stigmasterol,a soy lipid-derived phytosterol,is an antagonist of the bile acid nuclear receptor FXR[J].Pediatr Res,2007,62(3):301-306.
    [10] De Marino S,Ummarino R,D′Auria MV,et al.Theonellasterols and conicasterols from Theonella swinhoei.Novel marine natural ligands for human nuclear receptors[J].J Med Chem,2011,54(8):3065-3075.
    [11] Sepe V,Bifulco G,Renga B,et al.Discovery of sulfated sterols from marine invertebrates as a new class of marine natural antagonists of farnesoid-X-receptor[J].J Med Chem, 2011,54(5):1314-1320.
    [12] Putra MY,Bavestrello G,Cerrano C,et al.Polyhydroxylated sterols from the Indonesian soft coral Sinularia sp.and their effect on farnesoid X-activated receptor[J].Steroids,2012,77(5):433-440.
    [13] Kumar D,Khanna AK,Pratap R,et al.Dose escalation pharmacokinetics and lipid lowering activity of a novel farnesoid X receptor modulator:16-dehydropregnenolone[J].Indian J Pharmacol,2012,44(1):57-62.
    [14] Nam SJ, Ko H, Shin M, et al. Farnesoid X-activated receptor antagonists from a marine sponge Spongia sp.[J].Bioorg Med Chem Lett,2006,16(20):5398-5402.
    [15] Nam SJ, Ko H, Ju MK, et al. Scalarane sesterterpenes from a marine sponge of the genus Spongia and their FXR antagonistic activity[J].J Nat Prod,2007,70(11):1691-1695.
    [16] Choi H,Hwang H,Chin J,et al.Tuberatolides,potent FXR antagonists from the Korean marine tunicate Botryllus tuberatus[J].J Nat Prod,2011,74(1):90-94.
    [17] Di Leva FS,Festa C,D′Amore C,et al.Binding mechanism of the farnesoid X receptor marine antagonist suvanine reveals a strategy to forestall drug modulation on nuclear receptors.design,synthesis,and biological evaluation of novel ligands[J].J Med Chem,2013,56(11):4701-4717.
    [18] Dussault I,Beard R,Lin M,et al.Identification of gene-selective modulators of the bile acid receptor FXR[J].J Biol Chem,2003,278(9):7027-7033.
    [19] Kainuma M,Makishima M,Hashimoto Y,et al.Design,synthesis,and evaluation of non-steroidal farnesoid X receptor(FXR)antagonist[J].Bioorg Med Chem,2007,15(7):2587-2600.
    [20] Huang H,Yu Y,Gao Z,et al.Discovery and optimization of 1,3,4-trisubstituted-pyrazolone derivatives as novel,potent,and nonsteroidal farnesoid X receptor(FXR)selective antagonists[J].J Med Chem,2012,55(16):7037-7053.
    [21] Ma RQ.The design,synthesis and biological evaluation of FXR antagnists and the research on microwave-assisted one-pot synthesis of 4-arylidene-pyrazolone derivatives( FXR拮抗剂的设计、合成与药理活性研究及4-芳亚甲基取代吡唑酮类衍生物的方法学研究)[D].Shanghai:East China University of Science and Technology,2011.
    [22] Yu DD,Lin W,Forman BM,et al.Identification of trisubstituted-pyrazol carboxamide analogs as novel and potent antagonists of farnesoid X receptor[J].Bioorg Med Chem,2014,22(11):2919-2938.
    [23] Huang H,Si P,Wang L,et al.Design,synthesis,and biological evaluation of novel nonsteroidal farnesoid X Receptor(FXR)antagonists:molecular basis of FXR antagonism[J].Chem Med Chem,2015,10(7):1184-1199..
    [24] Amano Y,Ishikawa E,Shinozawa E,et al.Combinational effects of farnesoid X receptor antagonist and statin on plasma lipid levels and low-density lipoprotein clearance in guinea pigs[J].Life Sci,2014,108(1):7-12.
    [25] Liu P,Xu X,Chen L,et al.Discovery and SAR study of hydroxyacetophenone derivatives as potent,non-steroidal farnesoid X receptor(FXR)antagonists[J].Bioorg Med Chem Lett,2014,22(5):1596-1607.
    [26] Liu P.The design,synthesis and SAR studies of two types of FXR antagonists and the exploring of aryne in several reactions(两类FXR拮抗剂的设计、合成与构效关系研究及芳炔参与的反应研究)[D].Shanghai:East China University of Science and Technology,2014.
    [27] Xu X,Xu X,Liu P,et al.Structural basis for small molecule NDB(N-Benzyl-N-(3-(tert-butyl)-4-hydroxyphenyl)-2,6-dichloro-4-(dimethylamino)benzamide)as a selective antagonist of farnesoid X receptor α(FXRα)in stabilizing the homodimerization of the receptor[J].J Biol Chem,2015,290(32):19888-19899.
    [28] Merk D,Lamers C,Ahmad K,et al.Extending the structure-activity relationship of anthranilic acid derivatives as farnesoid X receptor modulators:development of a highly potent partial farnesoid X receptor agonist[J].J Med Chem,2014,57(19):8035-8055.
    [29] Fu J,Si P,Zheng M,et al.Discovery of new non-steroidal FXR ligands via a virtual screening workflow based on Phase shape and induced fit docking[J].Bioorg Med Chem Lett,2012,22(22):6848-6853.
    [30] Wang L,Si P,Sheng Y,et al.Discovery of new non-steroidal farnesoid X receptor modulators through 3D shape similarity search and structure-based virtual screening[J].Chem Biol Drug Des, 2015,85(4):481-487.
    [31] Liu Z, Law WK, Wang D, et al. Synthesis and discovery of andrographolide derivatives as non-steroidal farnesoid X receptor(FXR)antagonists[J].RSC Adv,2014,4(26):13533-13545.
    [32] Kaimal R,Song X,Yan B,et al.Differential modulation of farnesoid X receptor signaling pathway by the thiazolidinediones[J].J Pharmacol Exp Ther,2009,330(1):125-134.
    [33] Lu W,Cheng F,Jiang J,et al.FXR antagonism of NSAIDs contributes to drug-induced liver injury identified by systems pharmacology approach[J].Sci Rep,2015,5:8114.
    [34] Schmidt J, Klingler FM, Proschak E, et al. NSAIDs Ibuprofen,indometacin,and diclofenac do not interact with farnesoid X receptor[J].Sci Rep,2015,5:14782.
计量
  • 文章访问数:  1084
  • HTML全文浏览量:  2
  • PDF下载量:  3648
  • 被引次数: 0
出版历程
  • 刊出日期:  2016-10-24

目录

/

返回文章
返回
x 关闭 永久关闭