• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

模拟PEG的聚多肽融合技术研究进展

陈荣, 尹骏, 邵美, 姚文兵, 高向东

陈荣, 尹骏, 邵美, 姚文兵, 高向东. 模拟PEG的聚多肽融合技术研究进展[J]. 中国药科大学学报, 2016, 47(6): 648-653. DOI: 10.11665/j.issn.1000-5048.20160603
引用本文: 陈荣, 尹骏, 邵美, 姚文兵, 高向东. 模拟PEG的聚多肽融合技术研究进展[J]. 中国药科大学学报, 2016, 47(6): 648-653. DOI: 10.11665/j.issn.1000-5048.20160603
CHEN Rong, YIN Jun, SHAO Mei, YAO Wenbing, GAO Xiangdong. Advances in recombinant polypeptide mimetics of PEG[J]. Journal of China Pharmaceutical University, 2016, 47(6): 648-653. DOI: 10.11665/j.issn.1000-5048.20160603
Citation: CHEN Rong, YIN Jun, SHAO Mei, YAO Wenbing, GAO Xiangdong. Advances in recombinant polypeptide mimetics of PEG[J]. Journal of China Pharmaceutical University, 2016, 47(6): 648-653. DOI: 10.11665/j.issn.1000-5048.20160603

模拟PEG的聚多肽融合技术研究进展

基金项目: 国家自然科学基金资助项目(No.81430082)

Advances in recombinant polypeptide mimetics of PEG

  • 摘要: 多肽和蛋白质药物特异性高、生物活性高,但是稳定性差、血浆半衰期短,限制了其在临床上的应用。PEG修饰技术是蛋白质长效化的常用手段,但仍存在一定的缺点,因此近年来研究者开发了模拟PEG的聚多肽融合技术。聚多肽融合技术是通过DNA重组技术将蛋白质药物与特殊的氨基酸序列融合,增加药物的流体动力学体积或产生电荷效应,从而延缓肾小球滤过,增加融合蛋白的血浆半衰期。本文对已有的多种聚多肽及其在蛋白质长效化方面的研究进行综述。
    Abstract: Peptide and protein biologics possess high specificity and high biological activity, but their poor stability and short plasma half-life have limited clinical application. One established strategy to increase half-life of therapeutic proteins is chemical conjugation of the biologic with PEG. Nevertheless, PEGylation technology has some drawbacks, so recombinant polypeptide mimetics of PEG have gradually developed in recent years. Pharmaceutically active protein can be fused with specific amino acid sequences using recombinant DNA technology, and then increase hydrodynamic volume or produce charge effect, which retards kidney filtration and eventually prolongs the half-life. This article mainly reviews kinds of polypeptides and the research progress in half-life extension of therapeutic proteins.
  • [1] Walsh G.Biopharmaceutical benchmarks 2014[J].Nat Biotechnol,2014,32(10):992-1000.
    [2] Zundorf I,Dingermann T.PEGylation—a well-proven strategy for the improvement of recombinant drugs[J].Pharmazie,2014,69(5):323-326.
    [3] Ginn C,Khalili H,Lever R,et al.PEGylation and its impact on the design of new protein-based medicines[J].Fut Med Chem,2014,6(16):1829-1846.
    [4] Turecek PL,Bossard MJ,Schoetens F,et al.PEGylation of biopharmaceuticals:a review of chemistry and nonclinical safety information of approved drugs[J].J Pharm Sci,2016,105(2):460-475.
    [5] Garay RP,El-Gewely R,Armstrong JK,et al.Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents[J].Exp Opin Drug Deliv,2012,9(11):1319-1323.
    [6] Ishida T,Kiwada H.Anti-polyethyleneglycol antibody response to PEGylated substances[J].Biol Pharm Bull,2013,36(6):889-891.
    [7] Verhoef JJ,Carpenter JF,Anchordoquy TJ,et al.Potential induction of anti-PEG antibodies and complement activation toward PEGylated therapeutics[J].Drug Discov Today,2014,19(12):1945-1952.
    [8] Zhang F,Liu MR,Wan HT.Discussion about several potential drawbacks of PEGylated therapeutic proteins[J].Biol Pharm Bull,2014,37(3):335-339.
    [9] Freire-de-Lima L,Fonseca LM,Oeltmann T,et al.The trans-sialidase,the major trypanosoma cruzi virulence factor:three decades of studies[J].Glycobiology,2015,25(11):1142-1149.
    [10] Buscaglia CA,Alfonso J,Campetella O,et al.Tandem amino acid repeats from Trypanosoma cruzi shed antigens increase the half-life of proteins in blood[J].Blood,1999,93(6):2025-2032.
    [11] Alvarez P,Buscaglia CA,Campetella O.Improving protein pharmacokinetics by genetic fusion to simple amino acid sequences[J].J Biol Chem,2004,279(5):3375-3381.
    [12] Liu D,Nikoo M,Boran G,et al.Collagen and gelatin[J].Annu Rev Food Sci Technol,2015,6:527-557.
    [13] Huang YS,Wen XF,Wu YL,et al.Engineering a pharmacologically superior form of granulocyte-colony-stimulating factor by fusion with gelatin-like-protein polymer[J].Eur J Pharm Bio-pharm,2010,74(3):435-441.
    [14] Roberts S,Dzuricky M,Chilkoti A.Elastin-like polypeptides as models of intrinsically disordered proteins[J].FEBS Lett,2015,589(19):2477-2486.
    [15] Kowalczyk T,Hnatuszko-Konka K,Gerszberg A,et al.Elastin-like polypeptides as a promising family of genetically-engineered protein based polymers[J].World J Microbiol Biotechnol,2014,30(8):2141-2152.
    [16] Ukpebor OT,Shah A,Bazov E,et al.Inverse temperature transition of elastin like motifs in major ampullate dragline silk:MD simulations of short peptides and NMR studies of water dynamics[J].Soft Matter,2014,10(5):773-785.
    [17] Schipperus R,Eggink G,de Wolf FA.Secretion of elastin-like polypeptides with different transition temperatures by Pichia pastoris[J].Biotechnol Prog,2012,28(1):242-247.
    [18] Bataille L,Dieryck W,Hocquellet A,et al.Recombinant production and purification of short hydrophobic Elastin-like polypeptides with low transition temperatures[J].Protein Exp Purif,2016,121:81-87.
    [19] Hu J,Wang G,Liu X,et al.Enhancing pharmacokinetics,tumor accumulation,and antitumor efficacy by alastin-Like polypeptide fusion of interferon alpha[J].Adv Mater,2015,27(45):7320-7324.
    [20] Conrad U,Plagmann I,Malchow S,et al.ELPylated anti-human TNF therapeutic single-domain antibodies for prevention of lethal septic shock[J].Plant Biotechnol J,2011,9(1):22-31.
    [21] Ashutosh C.Therapeutic agents comprising a GLP-1 receptor agonist and elastin-like peptide:US,8178495[P].2012-05-15.
    [22] Muroga Y,Nakaya A,Inoue A,et al.Conformation of poly(gamma-glutamic acid)in aqueous solution[J].Biopolymers,2016,105(4):191-198.
    [23] Northfelt DW,Allred JB,Liu HS,et al.Phase 2 trial of paclitaxel polyglumex with capecitabine for metastatic breast cancer[J].Am J Clin Oncol,2014,37(2):167-171.
    [24] Leung DW.Recombinant production of polyanionic polymers,and uses thereof:US,20020169125[P].2002-10-03.
    [25] Price JL, Culyba EK, Chen WT, et al. N-glycosylation of enhanced aromatic sequons to increase glycoprotein stability[J].Biopolymers,2012,98(3):195-211.
    [26] Chung HS,Kim JS,Lee SM,et al.Additional N-glycosylation in the N-terminal region of recombinant human alpha-1 antitrypsin enhances the circulatory half-life in Sprague-Dawley rats[J].Glycoconj J,2016,33(2):201-208.
    [27] Besman M.Conjugates of biologically active proteins having a modified in vivo half-life:US,8129348[P].2014-06-10.
    [28] Schlapschy M,Theobald I,Mack H,et al.Fusion of a recombinant antibody fragment with a homo-amino-acid polymer:effects on biophysical properties and prolonged plasma half-life[J].Protein Eng Des Sel,2007????????ぢ???戩爺??嬳??崸???敢湲搯氾敛爲??吠??牣楨敥摬牬楥据桢????慲椠瑖椬湗敡湮????椬?敥瑥?慨汩???楎??椼杩栾?捴漠湡瑬爮愼猯瑩 ̄瑁甠浲潥牣?業浢慩杮楡湮杴?睰楯瑬桹?牥慰摴楩潤?氠慥扸整汥敮摤?愠湴瑨楥戠漼摩社??愠扶?晶牯愠朼洯敩渾瑨獡?瑦愭楬汩潦牥攠摯?映潰牥?潴灩瑤楥浳椠穡敮摤?灰桲慯牴浥慩据潳欠楩湮攠瑡椠捴獵?癡楢慬?倠?卡祮汮慥瑲楛潊湝嬮?嵩??楡???扩獯??楣???ぬ????戬????戬?????????〨???戺爱??嬶??崱?‰?愼牢慲爯椾????甠栠湐?乤??扴爠慖济漬療楡捬桡?删??楓?敭琠?慃氬???楥??湡桬愮渼振敩搾?楸??楮湳?癯楮瘠潯??楩??敩普映楶捩慶捯礼?潩显?慨?瑬祦瀭敬???椠湯瑦攠牢晩敯牬潯湧?獣畡灬敬特愠条潣湴楩獶瑥?睭楯瑬桥?敵硬瑥敳渠摢敹搠?灔汅慎猠浰慲?桴慥汩普?汰楯晬敹?楥湲?慛?浝漮甼獩放?洠潃摯敮汴?潯晬?浒略汬瑥楡灳汥攼?獩挾氬攲爰漱猶椬猼孢?崲??椼?? ̄?椵漲氭??栮敤浯??椱??㈱?????戮??????扬???㈱??㈱?????金?ぢ????戳爱??嬠?づ嵥???潮牧愠瑎桃?噔??潗氬穓数???匠捂桊氬愼灩猾捥桴礠????椯?放瑇?慧氭???楎?偡?匠祩汭慰瑲楯潶湥?漠晧?浵畣牡楧湯敮?汣敡灰瑡楢湬?氠敯慦搠獰?瑥潶?敮硴瑩敮湧搠敨摹?灯汧慬獹浣慥?桩慡氠晷?汴楨景敵?愠湩摮?敲湥桡慳湩据敧搠?楡??楬湩?癥椠癢潬??楤??敬晵晣楯捳慥捛祊孝?崼??楐??潓氠?偮桥愼爯浩??椲??日?????戼??资??戩????????????????扝爠??孬??嵡???潊汌稬敇????潩牮慧琠桎?嘬??慯獲瑥????椼?放瑥?愠污???椯??潁渠杮?慶捥瑬椠湬杯?偧?卡祣汴慩瑮敧搠?汵敭灡瑮椠湧?慯海整汨椠潨牯慲瑭敯獮?漠扦敵獳楩瑯祮?扰祲?灴牥潩浮漨瑖楒湓札″猱愷琩椺敥瑮票?慮湣摥?瀠爼敩瘾敩湮琠楶湩杶?栠礼瀯潩派数瑯慴扥潮汣楹猠浡?楤渠?污敬灦琭楬湩?摥敛晊楝挮椼敩渾瑊??敨灡?潭戠?潣扩?洯楩挾攬嬲?崱??椼??渱搰漱挼爯楢渾漨永漩机礲???椭?祝?????扲??????戠?????㈠???至????批爠??嬬??嵰???慣氠癖漬????呴爠敡浬愮渼琯敩 ̄????牮捧漭癡楣瑴潩?????業?敮琠?慲汯????楨??浭灯牮潥瘠敷摩?摨漠硤潥牬畡批楥捤椠湣?敥湡捲慡灮獣略氨慖瑒楓漭渳?愷温携?灥桳慵牬浴慳挠潯武椠湡攠瑤楯捵獢?潥昭?晬敩牮牤椬瑰楬湡?晥畢獯椭潣湯?灴牲潯瑬敬楥湤?湳慩湮潧捬慥爠牡楳散牥獮?扩敮慧爠楤湯杳?瀠牳潴汵楤湹攠?獮攠牧楲湯敷?慨渠摨?慲汭慯湮楥渭敤?敦汩散浩敥湮瑴猠孡?嵵??楳??楝漮洼慩挾牊漠浃潬汩敮挠畅汮敤獯??楩????????扢?????戲??社???????土??(6):2595-2603.
    [29] Alters SE, McLaughlin B, Spink B, et al. GLP2-2G-XTEN:a pharmaceutical protein with improved serum half-life and efficacy in a rat Crohn′s disease model[J].PLoS One,2012,7(11):e50630.
    [30] Haeckel A,Appler F,Figge L,et al.XTEN-annexin A5:XTEN allows complete expression of long-circulating protein-based imaging probes as recombinant alternative to PEGylation[J].J Nucl Med,2014,55(3):508-514.
    [31] Ding S,Song M,Sim BC,et al.Multivalent antiviral XTEN-peptide conjugates with long in vivo half-life and enhanced solubility[J].Bioconjug Chem,2014,25(7):1351-1359.
    [32] Schlapschy M,Binder U,Borger C,et al.PASylation:a biological alternative to PEGylation for extending the plasma half-life of pharmaceutically active proteins[J].Protein Eng Des Sel,2013,26(
计量
  • 文章访问数:  979
  • HTML全文浏览量:  1
  • PDF下载量:  3069
  • 被引次数: 0
出版历程
  • 刊出日期:  2016-12-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭