• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

N-(4-咪唑甲基)-羟乙基壳聚糖自组装胶束载槲皮素的研究

夏晓静, 胡英, 金江, 徐蓓华, 周建平

夏晓静, 胡英, 金江, 徐蓓华, 周建平. N-(4-咪唑甲基)-羟乙基壳聚糖自组装胶束载槲皮素的研究[J]. 中国药科大学学报, 2017, 48(1): 46-52. DOI: 10.11665/j.issn.1000-5048.20170107
引用本文: 夏晓静, 胡英, 金江, 徐蓓华, 周建平. N-(4-咪唑甲基)-羟乙基壳聚糖自组装胶束载槲皮素的研究[J]. 中国药科大学学报, 2017, 48(1): 46-52. DOI: 10.11665/j.issn.1000-5048.20170107
XIA Xiaojing, HU Ying, JIN Jiang, XU Beihua, ZHOU Jianping. Research on self-assembly micelles of N-(4-methylimidazole)-hydroxyethyl-chitosan loading quercetin[J]. Journal of China Pharmaceutical University, 2017, 48(1): 46-52. DOI: 10.11665/j.issn.1000-5048.20170107
Citation: XIA Xiaojing, HU Ying, JIN Jiang, XU Beihua, ZHOU Jianping. Research on self-assembly micelles of N-(4-methylimidazole)-hydroxyethyl-chitosan loading quercetin[J]. Journal of China Pharmaceutical University, 2017, 48(1): 46-52. DOI: 10.11665/j.issn.1000-5048.20170107

N-(4-咪唑甲基)-羟乙基壳聚糖自组装胶束载槲皮素的研究

基金项目: 宁波市自然科学基金资助项目(No.2014A610203,No.2014A610212);浙江省教育厅课题资助项目(No.Y201226180); 宁波市科技创新团队资助项目(No.2015C110027)

Research on self-assembly micelles of N-(4-methylimidazole)-hydroxyethyl-chitosan loading quercetin

  • 摘要: 为了提高天然黄酮类化合物槲皮素的水溶性,将天然高分子材料壳聚糖进行两亲性衍生化制成N-(4-咪唑甲基)-羟乙基壳聚糖(MHC),作为槲皮素自组装聚合物胶束载体,并采用1H NMR、元素分析法、芘荧光光谱法等进行了表征;同时采用单因素考察法进行了MHC-槲皮素胶束的工艺优化。结果表明,载体浓度为0.67%、槲皮素与MHC质量比为1∶10时可以获得粒径为(99.21±1.71)nm,Zeta电位为+(20.01±0.72)mV,载药量为(5.42±0.32)%的聚合物胶束;其体外释药曲线符合Higuchi方程Q=0.110 1t1/2-0.064。槲皮素胶束和槲皮素溶液剂静脉注射给药后,在大鼠体内平均滞留时间分别是21.42和0.30 h,AUC0-t分别为57.49和2.50 μg·h/mL,表明采用MHC为载体材料的槲皮素自组装胶束具有较好的增溶、缓释以及提高生物利用度的作用,可作为槲皮素等抗肿瘤药物的载体。
    Abstract: To improve the solubility of quercetin(QT), one of flavonoids that can inhibit the proliferation of various types of cancer cells, the novel amphiphilic polymer N-(4-methylimidazole)-hydroxyethyl-chitosan(MHC), synthetized by chemical derivatization from chitosan, was used as the self-assembly micelles of QT. The formed polymer was characterized by 1H NMR, elemental analysis and pyrene fluorescence spectrometry. The formulation of MHC micelles loading quercetin was optimized through single factor experiment. Then the optimized formulation was obtained as follows: the concentration of MHC was 0. 67% and the ratio of drug and carrier was 1 ∶10. The micelles particle size was(99. 21±1. 71)nm, Zeta potential was +(20. 01±0. 72)mV and drug loading was(5. 42±0. 32)%. The in vitro release curve was investigated and was found to conform to Higuchi equation of Q=0. 1101t1/2-0. 064. The results of in vivo experiment showed that the mean rentention time and bioavailability of the MHC-QT micelles were 21. 42 h and 57. 49 μg ·h/mL, respectively, compared to 0. 30 h and 2. 50 μg ·h/mL of the free QT solution. These indicated that the MHC micelles could significantly improve the solubility of QT, the drug sustained-release effect and bioavailability, which would used as carrier for the anti-tumor drugs.
  • [1] Yuan Z,Long C,Junming T,et al.Quercetin-induced apoptosis of HL-60 cells by reducing PI3K/Akt[J].Mol Biol Rep,2012,39(7):7785-7793.
    [2] Yang F,Jiang X,Song L,et al.Quercetin inhibits angiogenesis through thrombospondin-1 upregulation to antagonize human prostate cancer PC-3 cell growth in vitro and in vivo[J].Oncol Rep,2016,35(3):1602-1610.
    [3] Zhang Y,Huo MR,Zhou JP,et al.Potential of amphiphilically modified low molecular weight chitosan as a novel carrier for hydrophobic anticancer drug:synthesis,characterization,micellization and cytotoxicity evaluation[J].Carbohydr Polym,2009,77:231-238.
    [4] Liu WW,Zhang SY,Yang Y,et al.Preparation of tumor-targeting chitosan micelle with transmembrane effect[J].J China Pharm Univ(中国药科大学学报),2015,46(5):561-567.
    [5] Zheng YX,Zhang WN,He LP,et al.Trimethyl chitosan nanoparticles coated with Pluronic F-127 for oral insulin delivery system[J].J China Pharm Univ(中国药科大学学报),2016,47(4):442-447.
    [6] Varkouhi AK,Scholte M,Storm G,et al.Endosomal escape pathways for delivery of biologicals[J].J Control Release,2011,151(3):220-228.
    [7] Zhang MB,Li L,Sun YT,et al.Study on antitumor mechanism of quercetin based on molecular reverse docking method[J].Chin J Exper Tradit Med Formu(中国实验方剂学杂志),2012,18(23):145-148.
    [8] Hans M,Shimoni K,Danino D,et al.Synthesis and characterization of mPEG-PLA prodrug micelles[J].Biomacromolecules,2005,6(5):2708-2717.
    [9] Xia XJ,Xu BH,Zhang TQ,et al.Preparation,characteration and pharmacokinetics in rats of thiolated-chitosan microspheres loading quercetin[J].J China Pharm Univ(中国药科大学学报),2014,45(2):185-191.
    [10] Ghosn B,Singh A,Li M,et al.Efficient gene silencing in lungs and liver using imidazole-modified chitosan as a nanocarrier for small interfering RNA[J].Oligonucleotides,2010,20(3):163-172.
    [11] Zhong CH,Luo BH,Zhou CR,et al.Synthesis of hydroxyethyl chitosan and its compatibility with poly(D,L-lactide)[J].Chem Res App(化学研究与应用),2010,22(9):1102-1107.
  • 期刊类型引用(9)

    1. 戴建英. 在体单向肠灌流法研究知母提取物肠吸收特性. 湖北医药学院学报. 2024(05): 518-523 . 百度学术
    2. 黄秋妹,石茗,王珍,倪明龙,阙慧卿. 吴茱萸碱制剂的研究进展. 广东化工. 2023(10): 66-68+79 . 百度学术
    3. 黄秋妹,阙慧卿,李唯,钱丽萍,刘经亮. 吴茱萸碱脂质体的制备工艺研究. 医学信息. 2023(19): 19-22 . 百度学术
    4. 张佩琛,方栋,郝海军. 吴茱萸碱胃漂浮片制备及其对家兔胃黏膜损伤的保护作用. 中成药. 2023(11): 3527-3533 . 百度学术
    5. 董丹丹,焦红军,郝海军,范明松. 吴茱萸碱纳米结构脂质载体处方优化和SD大鼠体内口服药动学研究. 中草药. 2022(01): 60-70 . 百度学术
    6. 宋朔尧,杨贵前,陶玲,沈祥春,张环,李和蓉,王守莉,石惠云,刘文. 吴茱萸碱磷脂复合物自乳化药物递送系统的制备、表征及胃黏膜渗透性研究. 中国药房. 2022(09): 1056-1061 . 百度学术
    7. 赵梦,刘卓雅,于嘉敏,王芮,范铭婕,乔宏志. 生姜细胞外囊泡样纳米粒载吴茱萸碱的处方工艺及体外释药研究. 南京中医药大学学报. 2022(06): 527-533 . 百度学术
    8. 决利利,梁婧,李晓婷,王柯静,周珊珊,刘艳菊. 松果菊苷固体脂质纳米粒的制备及其在体肠吸收特性、体内药动学研究. 中成药. 2022(08): 2429-2434 . 百度学术
    9. 陈云,曾梅,徐靖鑫,胡娟,张景勍. 二甲双胍-白藜芦醇复合物油包水型纳米乳在体肠吸收及其药代动力学研究. 中国药科大学学报. 2021(03): 325-331 . 本站查看

    其他类型引用(2)

计量
  • 文章访问数:  939
  • HTML全文浏览量:  4
  • PDF下载量:  1821
  • 被引次数: 11
出版历程
  • 刊出日期:  2017-02-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭