• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

新型聚砜手性膜的制备及其在色氨酸手性拆分中的应用

季一兵, 段飞飞, 郝单单, 陈建秋

季一兵, 段飞飞, 郝单单, 陈建秋. 新型聚砜手性膜的制备及其在色氨酸手性拆分中的应用[J]. 中国药科大学学报, 2017, 48(1): 53-59. DOI: 10.11665/j.issn.1000-5048.20170108
引用本文: 季一兵, 段飞飞, 郝单单, 陈建秋. 新型聚砜手性膜的制备及其在色氨酸手性拆分中的应用[J]. 中国药科大学学报, 2017, 48(1): 53-59. DOI: 10.11665/j.issn.1000-5048.20170108
JI Yibing, DUAN Feifei, HAO Dandan, CHEN Jianqiu. Preparation and application of novel polysulfone chiral membranes for the separation of tryptophan enantiomers[J]. Journal of China Pharmaceutical University, 2017, 48(1): 53-59. DOI: 10.11665/j.issn.1000-5048.20170108
Citation: JI Yibing, DUAN Feifei, HAO Dandan, CHEN Jianqiu. Preparation and application of novel polysulfone chiral membranes for the separation of tryptophan enantiomers[J]. Journal of China Pharmaceutical University, 2017, 48(1): 53-59. DOI: 10.11665/j.issn.1000-5048.20170108

新型聚砜手性膜的制备及其在色氨酸手性拆分中的应用

Preparation and application of novel polysulfone chiral membranes for the separation of tryptophan enantiomers

  • 摘要: 为了研制新型聚砜手性膜,采用十二酰氯与β-环糊精反应,制备一种新型的十二酰基-β-环糊精,然后将其添加到聚砜铸膜液中,采用浸入沉淀相转化法制备十二酰基-β-环糊精/聚砜手性膜。分别考察十二酰基-β-环糊精的添加量对膜的纯水通量、牛血清白蛋白(BSA)截留率和手性拆分性能的影响。膜的形态采用扫描电子显微镜进行表征。实验结果表明,随着十二酰基-β-环糊精含量的增加,膜的孔径发生变化,膜的支撑层中出现指状孔结构。因此,膜的水通量显著上升而截留率略有降低。当十二酰基-β-环糊精的添加量在2%~3.5%范围内,随着十二酰基-β-环糊精添加量的增加,过滤次数相同时,对映体过量百分数(ee,%)逐渐增加。利用所制备的十二酰基-β-环糊精聚砜/手性膜,采用多级过滤装置最终实现了外消旋色氨酸的完全分离。
    Abstract: To preparate a novel polysulfone chiral membranes, β-cyclodextrin was functionalized with dodecanoyl chloride, and this modified β-cyclodextrin was then incorporated into polysulfone casting solution to form the dodecanoyl-β-cyclodextrin/polysulfone chiral membrane. Meanwhile, current studies have investigated the effect of adding different amount of dodecanoyl-β-cyclodextrin on the pure water flux, bovine serum albumin(BSA)rejection rate and enantioselectivity of the membranes. The morphology of the dodecanoyl-β-cyclodextrin/polysulfone chiral membrane was characterized by scanning electron microscopy(SEM). With the incorporation of dodecanoyl-β-cyclodextrin, the pore structure of the membrane changed significantly, with more finger-like pore structures appearing in the support layer. So the membrane water flux increased significantly, while the BSA rejection rate decreased. When the addition amount of dodecanoyl-β-cyclodextrin was in the range of 2% to 3. 5%, the enantiomeric excess increased with the addition of dodecanoyl-β-cyclodextrin. A complete separation of racemic tryptophan can be performed using this novel dodecanoyl-β-cyclodextrin/polysulfone chiral membrane-based separation system.
  • [1] Sueyoshi Y,Fukushima C,Yoshikawa M.Molecularly imprinted nanofiber membranes from cellulose acetate aimed for chiral separation[J].J Membrane Sci, 2010,357(1):90-97.
    [2] Bozkurt S, Yilmaz M, Sirit A. Chiral calix[4] arenes bearing amino alcohol functionality as membrane carriers for transport of chiral amino acid methylesters and mandelic acid[J].Chirality,2012,24(2):129-136.
    [3] Higuchi A,Tamai M,Ko YA,et al. Polymeric membranes for chiral separation of pharmaceuticals and chemicals[J].Polymer Reviews,2010,50(2):113-143.
    [4] Zhang Z,Zhang M,Liu Y,et al. Preparation of L-phenylalanine imprinted polymer based on monodisperse hybrid silica microsphere and its application on chiral separation of phenylalanine racemates as HPLC stationary phase[J].Sep Purify Technol,2012,87:142-148.
    [5] Ma C,Xu XL,Ai P,et al. Chiral separation of D,L-mandelic acid through cellulose membranes[J].Chirality,2011,23(5):379-382.
    [6] Gumí T, Valiente M, Palet C. Elucidation of SR-propranolol transport rate and enantioselectivity through chiral activated membranes[J].J Membrane Sci, 2005,256(1/2):150-157.
    [7] Ingole PG, Bajaj HC, Singh K. Optical resolution of racemic lysine monohydrochloride by novel enantioselective thin film composite membrane[J].Desalination,2012,305:54-63.
    [8] Wang H D,Chu L Y,Song H,et al. Preparation and enantiomer separation characteristics of chitosan/β-cyclodextrin composite membranes[J].J Membrane Sci, 2007,297(1):262-270.
    [9] Shiomi K,Yoshikawa M.Multi-stage chiral separation with electrospun chitin nanofiber membranes[J].Sep Purif Technol, 2013,118:300-304.
    [10] Robl S,Gou L,Gere A,et al. Chiral separation by combining pertraction and preferential crystallization[J].Chem Eng Process:Process Intensific,2013,67:80-88.
    [11] Matsuoka Y,Kanda N,Lee Y M,et al. Chiral separation of phenylalanine in ultrafiltration through DNA-immobilized chitosan membranes[J].J Membrane Sci, 2006,280(1/2):116-123.
    [12] Meng J,Wei G,Huang X,et al. A fluorescence sensor based on chiral polymer for highly enantioselective recognition of phenylalaninol[J].Polymer,2011,52(2):363-367.
    [13] Xie R,Chu LY,Deng JG.Membranes and membrane processes for chiral resolution[J].Chem Soc Rev, 2008,37(6):1243-1263.
    [14] Higuchi A,Higuchi Y,Furuta K,et al. Chiral separation of phenylalanine by ultrafiltration through immobilized DNA membranes[J].J Membrane Sci,2003,221(1/2):207-218.
    [15] Singh K,Ingole PG,Bajaj HC,et al. Preparation,characterization and application of β-cyclodextrin-glutaraldehyde crosslinked membrane for the enantiomeric separation of amino acids[J].Desalination,2012,298:13-21.
    [16] Ionita M,Pandele AM,Crica L,et al. Improving the thermal and mechanical properties of polysulfone by incorporation of graphene oxide[J].Composites Part B:Engineering,2014,59:133-139.
计量
  • 文章访问数:  823
  • HTML全文浏览量:  2
  • PDF下载量:  1745
  • 被引次数: 0
出版历程
  • 刊出日期:  2017-02-24

目录

    /

    返回文章
    返回