融合蛋白hVEGF121/βhCG与mGM-CSF/βhCG联合抗肿瘤作用及其机制
Anti-tumor effect and its mechanism of co-administration of fusion proteins hVEGF121/βhCG and mGM-CSF/βhCG
-
摘要: 探讨mGM-CSF/βhCG(GC)和hVEGF121/βhCG(VC)两种融合蛋白联用对C57BL/6J小鼠RM-1前列腺癌和B16F10黑色素瘤的抑制效果,并对其抗肿瘤作用机制进行初步研究。采用含有pET-28a-mGM-CSF-X10-βhCGCTP37和pET-28a-VEGF-M2-X10-βhCG-CTP37的两个重组菌进行乳糖诱导表达,分离纯化融合蛋白。将两种蛋白制备抗肿瘤蛋白疫苗(VC蛋白疫苗和GC蛋白疫苗),并将两蛋白混合制备联合蛋白疫苗(VGC蛋白疫苗),免疫C57BL/6J接瘤小鼠,测量瘤块生长状态;检测免疫小鼠脾细胞增殖以及对肿瘤细胞的细胞毒作用;ELISA检测小鼠体内细胞因子IFN-γ和抗hVEGF抗体浓度。结果发现,在前列腺癌和黑色素瘤小鼠移植瘤模型中,与生理盐水NS组相比,各实验组均具有统计学意义(P<;0.05)。其中VGC组抗肿瘤效果优于GC组和VC组(P<;0.01),且对前列腺癌和黑色素瘤的抑瘤率分别达到(41.7±0.83)%和(46.4±1.27)%。由此可见,VC和GC两种蛋白联合后,通过发挥抗肿瘤免疫和抗肿瘤血管生成双重作用,高效地抑制了RM-1前列腺癌和B16F10黑色素瘤的生长。
-
关键词:
- 血管内皮生长因子(VEGF) /
- 人绒毛膜促性腺激素(hCG) /
- 鼠源粒细胞巨噬细胞集落刺激因子(mGM-CSF) /
- 前列腺癌 /
- 黑色素瘤
Abstract: This study aimed at investigating the inhibitory effects and the anti-tumor mechanisms of co-administration of fusion proteins mGM-CSF/βhCG(GC)and hVEGF121/βhCG(VC)on RM-1 prostatic cancer and B16F10 melanoma in the C57BL/6J mouse model. Two recombinant stains containing pET-28a-mGM-CSF-X10-βhCGCTP37 and pET-28a-VEGF-M2-X10-βhCG-CTP37 were induced by lactose to express fusion proteins. The fusion proteins were separated and purified to prepare the anti-tumor protein vaccines(VC protein vaccine and GC protein vaccine), which were then mixed to prepare a combined protein vaccine named VGC protein vaccine. The prostatic cancer and melanoma tumor-bearing mice C57BL/6J were immunized with described vaccines, then the growth of each tumor was measured; splenocyte proliferation of immunized mice was detected; and the cytotoxic effects of the vaccine on tumor cells were tested. After that, the in vivo concentrations of IFN-γ and anti-hVEGF antibodies were investigated by ELISA. The difference between each experimental group and normal saline group(NS)was statistically significant in both tumor-bearing mouse models(P< 0. 05)respectively. Besides, VGC group exhibited significantly better anti-tumor effect compared with the GC and VC groups with the anti-tumor rate(41. 7±0. 83)% and(46. 4±1. 27)% for prostatic cancer and melanoma tumor, respectively. The co-administration of the two proteins, VC and GC, could inhibit the growth of RM-1 prostatic tumor and B16F10 melanoma effectively via anti-tumor immunity and anti-tumor angiogenesis. -
-
[1] Finkelstein SE,Salenius S,Mantz CA,et al.Combining immunotherapy and radiation for prostate cancer [J].Clin Genitourin Cancer,2015,13(1):1-9. [2] Rabinovich GA,Gabrilovich D,Sotomayor EM.Immunosuppressive strategies that are mediated by tumor cells[J].Annu Rev Immunol,2007,25(1):267-296. [3] Jiang PL,Lin HJ,Wang HW,et al.Galactosylated liposome as a dendritic cell-targeted mucosal vaccine for inducing protective anti-tumor immunity[J].Acta Biomater,2015,11(1):356-367. [4] Lundin M,Nordling S,Carpelan-Holmstrom M,et al.A comparison of serum and tissue hCG beta as prognostic markers in colorectal cancer[J].Anticancer Res,2000,20(6D):4949-4951. [5] Gershtein ES, Tailakov BB, Smirnova KD, et al. Cytoplasmic receptors of steroid hormones and clinico-morphological characteristics of skin melanoma[J].Vopr Onkol,1991,37(4):441-446. [6] Przybysz J,Chrostowska M,Ziókowski H,et al.The influence of prostaglandin E2 on the production of IFN-γ by bovine CD4+,CD8+ and WC1+ T cells[J].Res Vet Sci,,2016,105:31-35. [7] Sun HY, Zhang L, Zhang ZL, et al. Anti-cancer effect of VEGF121KDR/rGEL fusion toxion [J].Chin J Cancer Prev Treat(中华肿瘤防治杂志),2014,21(8):580-583. [8] Deng L,Fan J,Guo M,et al.Oncolytic and immunologic cancer therapy with GM-CSF-armed vaccinia virus of Tian Tan strain Guang9[J].Cancer Lett,2016,372(2):251-257. [9] Alikhan M,Koshy A,Hyjek E,et al.Discrepant serum and urine β-hCG results due to production of β-hCG by a cribriform-morular variant of thyroid papillary carcinoma[J].Clin Chim Acta,2015,438(7):181-185. [10] Cao RY,Chang N,Li MM,et al.Preparation of mGM-CSF/βhCG fusion protein and the effect of its sensitized DC vaccine on RM-1 prostate tumor in mice[J].J China Pharm Univ(中国药科大学学报),2015,46(1):111-116. [11] Tugues S,Koch S,Gualandi L,et al.Vascular endothelial growth factors and receptors:anti-angiogenic therapy in the treatment of cancer [J].Mol Aspects Med,2011,32(2):88-111. [12] Zhao MY,Song YN,Gao WT,et al.Fluorescence imaging efficiency of AngioSense(R)750EX和Hypoxisense 680 to inicroenvironment ofangiogen and hypoxia of tumors in vivo [J].Chin J Cancer Prev Treat(中华肿瘤防治杂志),2015,22(7):496-501. [13] van Nieuwenhuijze AE, Coghill E, Gray D, et al. Transgenic expression of GM-CSF in T cells causes disseminated histiocytosis[J].Am J Pathol,2014,184(1):184-199. [14] Cheng YC,Valero V,Davis ML,et al.Addition of GM-CSF to trastuzumab stabilises disease in trastuzumab-resistant HER2+ metastatic breast cancer patients[J].Br J Cancer,2010,103(9):1331-1334. -
期刊类型引用(9)
1. 戴建英. 在体单向肠灌流法研究知母提取物肠吸收特性. 湖北医药学院学报. 2024(05): 518-523 . 百度学术
2. 黄秋妹,石茗,王珍,倪明龙,阙慧卿. 吴茱萸碱制剂的研究进展. 广东化工. 2023(10): 66-68+79 . 百度学术
3. 黄秋妹,阙慧卿,李唯,钱丽萍,刘经亮. 吴茱萸碱脂质体的制备工艺研究. 医学信息. 2023(19): 19-22 . 百度学术
4. 张佩琛,方栋,郝海军. 吴茱萸碱胃漂浮片制备及其对家兔胃黏膜损伤的保护作用. 中成药. 2023(11): 3527-3533 . 百度学术
5. 董丹丹,焦红军,郝海军,范明松. 吴茱萸碱纳米结构脂质载体处方优化和SD大鼠体内口服药动学研究. 中草药. 2022(01): 60-70 . 百度学术
6. 宋朔尧,杨贵前,陶玲,沈祥春,张环,李和蓉,王守莉,石惠云,刘文. 吴茱萸碱磷脂复合物自乳化药物递送系统的制备、表征及胃黏膜渗透性研究. 中国药房. 2022(09): 1056-1061 . 百度学术
7. 赵梦,刘卓雅,于嘉敏,王芮,范铭婕,乔宏志. 生姜细胞外囊泡样纳米粒载吴茱萸碱的处方工艺及体外释药研究. 南京中医药大学学报. 2022(06): 527-533 . 百度学术
8. 决利利,梁婧,李晓婷,王柯静,周珊珊,刘艳菊. 松果菊苷固体脂质纳米粒的制备及其在体肠吸收特性、体内药动学研究. 中成药. 2022(08): 2429-2434 . 百度学术
9. 陈云,曾梅,徐靖鑫,胡娟,张景勍. 二甲双胍-白藜芦醇复合物油包水型纳米乳在体肠吸收及其药代动力学研究. 中国药科大学学报. 2021(03): 325-331 . 本站查看
其他类型引用(2)
计量
- 文章访问数:
- HTML全文浏览量: 0
- PDF下载量:
- 被引次数: 11