• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

聚乙二醇修饰靶向纳米制剂的研究进展

刘源, 周建平, 王伟

刘源, 周建平, 王伟. 聚乙二醇修饰靶向纳米制剂的研究进展[J]. 中国药科大学学报, 2017, 48(3): 268-275. DOI: 10.11665/j.issn.1000-5048.20170303
引用本文: 刘源, 周建平, 王伟. 聚乙二醇修饰靶向纳米制剂的研究进展[J]. 中国药科大学学报, 2017, 48(3): 268-275. DOI: 10.11665/j.issn.1000-5048.20170303
LIU Yuan, ZHOU Jianping, WANG Wei. Advances in PEGylated targeted nano-preparation[J]. Journal of China Pharmaceutical University, 2017, 48(3): 268-275. DOI: 10.11665/j.issn.1000-5048.20170303
Citation: LIU Yuan, ZHOU Jianping, WANG Wei. Advances in PEGylated targeted nano-preparation[J]. Journal of China Pharmaceutical University, 2017, 48(3): 268-275. DOI: 10.11665/j.issn.1000-5048.20170303

聚乙二醇修饰靶向纳米制剂的研究进展

基金项目: 国家自然科学基金资助项目(No.81102398,No.81273469);江苏省自然科学基金资助项目(No.BK2011624);中央高校基本科研业务费专项基金资助项目(No.JKVD2013011);国家基础科学人才培养基金资助项目(No.J1030830);江苏高校优势学科建设工程资助项目

Advances in PEGylated targeted nano-preparation

  • 摘要: 由于聚乙二醇具有良好的亲水性和柔顺性,能够改善药物的药代动力学和药效学特性,将其修饰到靶向纳米制剂表面能够增加药物在体内的滞留时间和浓度,因此聚乙二醇修饰靶向纳米制剂已成为目前药剂学领域的研究热点。本文总结了靶向纳米制剂的聚乙二醇物理和化学修饰方法,将聚乙二醇-脂质衍生物物理插入纳米制剂,或将聚乙二醇与纳米制剂化学键合;并探讨了聚乙二醇参数(如聚乙二醇相对分子质量、修饰密度、空间构象)对靶向纳米制剂性质的影响,对更好地构建聚乙二醇修饰的靶向纳米制剂提供参考。
    Abstract: Polyethylene glycol(PEG)with good hydrophilicity and flexibility can improve pharmacokinetic and pharmacodynamic properties of the nano-preparation, so PEG modification in the surface of nano-preparation can increase the in vivo residence time and concentration of drugs. At present, the targeted nano-preparation with PEG modification has become a research hotspot in the field of pharmaceutics. In this paper, the physical and chemical methods of PEG modification in targeted nano-preparation was summarized, which includes physically inserting PEG-lipid derivatives in nanostructure of targeted nano-preparation or modifying PEG with targeted nano-preparation. In addition, the influence of PEG parameters(molecular mass, modified density and spatial conformation)on properties of targeted nano-preparation was also discussed, which is important to preferably structure PEGylated targeted nano-preparation.
  • [1] Ke X.Advances in targeted drug delivery system[J].J China Pharm Univ(中国药科大学学报),2012,43(1):9-15.
    [2] Gina S,Oscar T,Suzuki,et al.Gulp1 is associated with the pharmacokinetics of PEGylated liposomal docorubicin(PLD)in inbred mouse strains[J].Nanomedicine,2016,12(7):2007-2017.
    [3] Nag M,Gajbhiye V,Kesharwani P,et al.Transferrin functionalized chitosan-PEG nanoparticles for targeted delivery of paclitaxel to cancer cells[J].Colloids Surf B,2016,148:363-370.
    [4] Lisa M,Victoria M,Brian D,et al.A comparison of changes to doxorubicin pharmacokinetics,antitumor activity,and toxicity mediated by PEGylated dendrimer and PEGylated liposome drug delivery systerm[J].Nanomedicine,2012,8(1):103-111.
    [5] Rabanel JM,Hildgen P,Banquy X.Assessment of PEG on polymeric particles surface,a key step in drug carrier translation[J].J Control Release,2014,185(10):71-87.
    [6] Blume G,Cerc G.Liposomes for the sustained drug release in vivo[J].Biochimi Biophys Acta,1990,1029(1):91-97.
    [7] Klibanov AL, Maruyama K, Torchilin VP, et al. Amphipathic polyethylene glycol effectively prolong the circulation time of liposomes[J].FEBS Lett,1990,268(1):235-237.
    [8] Zhang F,Li M,Su Y,et al.A dual-targeting drug co-delivery system for tumor chemo-and gene combined therapy[J].Mater Sci Eng C,2016,64(1):208-218.
    [9] Zhang J,Chen Y,Li X,et al.The influence of different long-circulating materials on the pharmacokinetics of liposomal vincristine sulfate[J].Int J Nanomedicine,2016,11:4187-4197.
    [10] Hsu WH,Liu SY,Chang YJ,et al.The PEGylated liposomal doxorubicin improves the delivery and therapeutic efficiency of 188Re-Liposome by modulating phagocytosis in C26 murine colon carcinoma tumor model[J].Nucl Med Biol,2014,41(9):765-771.
    [11] Ochi R,Chettimada S,Gupte SA.Poly(ethylene glycol)-cholesterol inhibits L-type Ca2+ channel currents and augments voltage-dependent inactivation in A7r5 cells[J].PLoS ONE,2014,9(9):e107049.
    [12] Zhen Y,Wang N,Gao Z,et al.Multifunctional liposomes constituting microneedles induced robust systemic and mucosal immunoresponses against the loaded antigens via oral mucosal vaccination[J].Vaccine,2015,33(35):4330-4340.
    [13] Xu H,Wang K,Deng Y,et al.Effects of cleavable PEG-cholesterol derivatives on the accelerated blood clearance of PEGylated liposomes[J].Biomaterials,2010,31(17):4757-4763.
    [14] Zhang X,Gan Y,Gan L,et al.PEGylated nanostructured lipid carriers loaded with 10-hydroxycamptothecin:an efficient carrier with enhanced anti-tumour effects against lung cancer[J].J Pharm Pharmacol,2008,60(8):1077-1087.
    [15] Silvander M,Bergstrand N,Edwards K.Linkage identity is a major factor in determing the effects of PEG-ylated surfactants on permeability of phosphatidylcholine liposomes[J].Chem Phys Lipids,2003,126(1):77-83.
    [16] Yameoqo JB,Geze A,Choisnard L,et al.Self-assembled biotranseterified cyclodextrins as Artemisinin nanocarriers-I:formulation,lyoavailability and in virto antimalarial activity assessment[J].Eur J Pharm Biopharm,2012,80(3):508-517.
    [17] Cho HJ,Yoon IS,Yoon HY,et al.Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin[J].Biomaterials,2012,33(4):1190-1200.
    [18] Choi KY,Min KH,Yoon HY,et al.PEGylation of hyaluronic acid nanoparticles improves tumors targetability in vivo[J].Biomaterials,2011,32(7):1880-1889.
    [19] Chen Y,Tao J,Xiong F,et al.Synthesis,self-assembly,and characterization of PEG-coated iron oxide nanoparticles as potential MRI contrast agent[J].Drug Dev Ind Pharm,2010,36(10):1235-1244.
    [20] Schuster BS,Suk JS,Woodworth GF,et al.Nanoparticle diffusion in respiratory mucus from humans without lung disease[J].Biomaterials,2013,34(13):3439-3446.
    [21] Bi Y,Liu L,Lu Y,et al.T7peptide-functionalized PEG-PLGA micelles loading with carmustine for targeting therapy of glioma[J].ACS Appl Mater Interfaces,2016,8(41):27465-27473.
    [22] Zhou L,Liu J,Xiong F,et al.Preparation and in vitro evaluation of PEG-coated superparamagnetic iron oxide nanoparticles[J].J China Pharm Univ(中国药科大学学报),2013, 44(4):316-320.
    [23] Alvarez C,Shin DH,Kwon GS.Reformulation of fungizone by PEG-DSPE micelles:deaggregation and detoxificantion of amphotericin B[J].Pharm Res,2016,33(9):2098-2106.
    [24] Zheng H,Wen S,Zhang Y,et al.Organosilane and polyethylene glycol functionalized magnetic mesoporous silica nanoparticles as carriers for CpG immunotherapy in vitro and in vivo[J].PLoS ONE,2015,10(10):1-17.
    [25] Zhou B,Zheng L,Peng C,et al.Synthesis and characterization of PEGylated lopyethylenimine-entrapped gold nanoparticles for blood pool and tumor CT imaging[J].ACS Appl Mater Interfaces,2014,6(19):17190-17199.
    [26] Shi J,Chen Z,Wang L,et al.A tumor-specific cleavable nanosystem of PEG-modified C60@Au hybrid aggregates for radio frequency-controlled release,hyperthermia,photodynamic therapy and X-ray imaging[J].Acta Biomaterialia,2016,1(29):282-297.
    [27] Hou C,Zhu H,Li Y,et al.Facile synthesis of oxidic PEG-modofied magnetic polydopamine nanospheres for Candida rugaosa lipase immobilization[J].Appl Microbiol Biotechnol,2015,99(3):1249-1259.
    [28] Sonectin[J].Biomacromolecules,2016,17(3):1017-1025.
    [29] Jin J,Han Y,Zhang C,et al.Effect of grafted PEG chain conformation on albumin and lysozyme adsorption:a combined study using QCMD and DPI[J].Colloids Surf B,2015,136(1):838-844..Applications of gold nanorods for cancer imaging and photothermal therapy[J].Cancer Nanotechnol,2010,624:343-357.
    [30] Qian J, Jiang L, Cai F, et al. Fluorescence-surface enhanced Raman scattering co-functionalized gold nanorods as near-infrared probes for purely optical in vivo imaging[J].Biomaterials,2011,32(6):1601-1610.
    [31] Zhou J, Zhang J, Gao W. Enhanced and selective delivery of enzyme therapy to 9L-glioma tumor via magnetic targeting of PEG-modified,β-glucosidase-conjugated iron oxide nanoparticles[J].Int J Nanomedicine,2014,9:2905-2917.
    [32] Kaminskas LM,Kelly BD,Mcleod VM,et al.Charecterisation and tumour targeting of PEGylated ploylysine dendrimers bearing doxorubicin via a pH labile linker[J].J Control Release,2011,152(2):241-248.
    [33] Wang D,Qian J,He S,et al.Aggregation enhanced fluorescence in PEGylated phospholipid nanomicelles for in vivo imaging[J].Biomaterials,2011, 32(25):5880-5888.
    [34] Feng X,Jiang D,Kang T,et al.Tumor-homing and penetrating peptide-functionalized photosensitizer-conjugated PEG-PLA nanoparticles for chemo-photodynamic combination therapy of drug-resistant cancer[J].ACS,2016,8(28):17817-17832.
    [35] Vijayaraghavan M,Stolnik S,Howdle SM,et al.Suitability of polymer materials for production of pulmonary microparticles using a PGSS supercritical fluid technique:preparation of microparticles using PEG,fatty acids and physical or chemicals blends of PEG and fatty acids[J].Int J Pharm,2013,441(1/2):580-588.
    [36] Razzazan A,Atyabi F,Kazami B,et al.Influence of PEG molecular weight on drug delivery of gemcitabine conjugated to SWCNT-PEG[J].Curr Drug Deliv,2016,13(8):1313-1324.
    [37] Wang YY,Lai SK,Suk JS,et al.Addressing the PEG mucoadhesivity paredox to engineer nanoparticles that “slip” through the human mucus barrier[J].Angew Chem,2008,47(50):9726-9729.
    [38] Xu Q,Boylan NJ,Cai S,et al.Scalable method to produce biodegradable nanoparticles that rapidly penetrate human mucus[J].J Control Release,2013,170(2):279-286.
    [39] Tomasetti L,Liebl R,Wastl DS,et al.Influence of PEGylation on nanoparticle mobility in defferent models of the extracellular matrix[J].Eur J Pharm Biopharm,2016,108:145-155.
    [40] Perry JL,Reuter KG,Kai MP,et al.PEGylated PRINT nanoparticles:the impact of PEG density on protein binding macrophage association,biodistribution,and pharmacokinetics[J].Nano Lett,2012,12(10):5304-5310.
    [41] Walkey CD,Olsen JB,Guo H,et al.Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake[J].J Am Chem Soc,2012,134(4):2139-2147.
    [42] Li Y,Zong L,Zhu J.Formulation optimization of PEGylated cationic liposomes as siRNA delivery system[J].J China Pharm Univ(中国药科大学学报),2011,42(5):412-417.
    [43] Mima Y, Hashimnoto Y, Shimizu T, et al. Anti-PEG lgM is a major contributor to the accelerated blood clearance of polyethylene glycol-conjugated protein[J].Mol Pharm,2015,12(7):2429-2435.
    [44] Abu Lila AS,Kiwasa H,Ishida T.The accelerated blood clearance(ABC)phenomenon:clinical challenge and approaches to manage[J].J Control Release,2013,172(1):38-47.
    [45] Li C,Cao J,Wang Y,et al.Accelerated blood clearance of pegylated liposomal topotecan:influence of polyethylene glycol grafting density and animal species[J].J Pharm Sci,2012,101(10):3864-3876.
    [46] Marruecos FD,Kastantin M,Schwartz DK,et al.Dense poly(ethylene glycol)brushes reduce adsorption and stabilize the unfolded conformation of fibronectin[J].Biomacromolecules,2016,17(3):1017-1025.
    [47] Jin J,Han Y,Zhang C,et al.Effect of grafted PEG chain conformation on albumin and lysozyme adsorption:a combined study using QCMD and DPI[J].Colloids Surf B,2015,136(1):838-844.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 刊出日期:  2017-06-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭