高级检索

多肽突变体Cbf-14-2抗青霉素耐药细菌的活性研究

Effective antimicrobial activity of Cbf-14-2 against penicillin-resistant bacteria in vitro and in vivo

  • 摘要: 本研究主要探讨了新型多肽突变体Cbf-14-2对携带NDM-1基因重组菌(E.coli BL21(DE3)-NDM-1)的抗菌活性及机制。实验采用肉汤倍比稀释活菌计数法测定多肽对E.coli BL21(DE3)-NDM-1重组菌的MIC/MBC和杀菌曲线,评价多肽的体外抗菌活性;采用重组菌腹腔感染法建立小鼠败血症模型,评价多肽的体内抗菌活性;通过Zeta电位分析和流式细胞术探讨Cbf-14-2抗耐药细菌感染的作用机制。结果表明,多肽Cbf-14-2对携带NDM-1基因的耐药细菌具有良好的抗菌活性(MIC=16 μg/mL),能在2 h内快速杀灭细菌;同时,多肽能显著降低感染小鼠肝、脾、肺和肾脏等组织的细菌负载量,对细菌显示出强效清除能力,将小鼠存活率由10%提高至70%。这主要由于Cbf-14-2能与细菌细胞膜表面负电荷发生静电结合,增加对膜的穿透能力。因此,Cbf-14-2有望成为治疗NDM-1耐药细菌诱发感染的潜在抗菌剂。

     

    Abstract: The antibacterial activity and mechanism of the antimicrobial peptide mutant Cbf-14-2 against NDM-1 carrying recombinant bacteria(E. coli BL21(DE3)-NDM-1)was investigated in this study. The minimum inhibitory concentration(MIC), minimum bactericidal concentration(MBC)and killing curves(KCs) in vitro were determined by the broth microdilution method. Mice septicemia model was established by interaperitotoneal injection of E. coli BL21(DE3)-NDM-1 to evaluate the antibacterial activity of this peptide in vivo. Results showed that Cbf-14-2 exhibited a potent antibacterial activity with MIC of 16 μg/mL and killed almost all recombinant bacteria within 120 min. Meanwhile, it significantly improved the survival rate of infected mice up to 70% with the decreasing of bacterial load in mice lung, liver, spleen and kidney. This powerful clearance ability of Cbf-14-2 against bacteria mainly related to its enhanced membrane penetration ability through neutralizing the negative charges and disrupting the integrity of the bacterial cell membrane. Therefore, Cbf-14-2 is expected to be a potential antimicrobial agent for the treatment of infection induced by multi-drug resistant bacteria, especially for the NDM-1carrying bacteria.

     

/

返回文章
返回