• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

螺旋霉素对金黄色葡萄球菌耐药突变体的转录组特征分析

姚健, 邵雷, 陈代杰, 张玉彬

姚健, 邵雷, 陈代杰, 张玉彬. 螺旋霉素对金黄色葡萄球菌耐药突变体的转录组特征分析[J]. 中国药科大学学报, 2017, 48(6): 738-744. DOI: 10.11665/j.issn.1000-5048.20170617
引用本文: 姚健, 邵雷, 陈代杰, 张玉彬. 螺旋霉素对金黄色葡萄球菌耐药突变体的转录组特征分析[J]. 中国药科大学学报, 2017, 48(6): 738-744. DOI: 10.11665/j.issn.1000-5048.20170617
YAO Jian, SHAO Lei, CHEN Daijie, ZHANG Yubin. Transcriptomic analysis of a spiramycin I-resistant Staphylococcus aureus mutant[J]. Journal of China Pharmaceutical University, 2017, 48(6): 738-744. DOI: 10.11665/j.issn.1000-5048.20170617
Citation: YAO Jian, SHAO Lei, CHEN Daijie, ZHANG Yubin. Transcriptomic analysis of a spiramycin I-resistant Staphylococcus aureus mutant[J]. Journal of China Pharmaceutical University, 2017, 48(6): 738-744. DOI: 10.11665/j.issn.1000-5048.20170617

螺旋霉素对金黄色葡萄球菌耐药突变体的转录组特征分析

基金项目: 国家自然科学基金资助项目(No.81573329)

Transcriptomic analysis of a spiramycin I-resistant Staphylococcus aureus mutant

  • 摘要: 螺旋霉素Ⅰ是一类重要的大环内酯类抗生素,但由于耐药菌的产生限制了临床使用。为了在转录水平上全局性的了解细菌耐药前后对抗生素响应上的变化和机制,通过基于RNA-seq方法对螺旋霉素敏感菌株Staphylococcus aureus ATCC29213和其诱导耐药突变菌株S.aureus ATCC29213-R在抗生素压力诱导前后菌体的转录组表达变化进行了分析。研究结果证明了螺旋霉素Ⅰ可诱导S.aureus ATCC29213产生耐药菌株,并通过测序发现该菌的23S rRNA 2089位A→C颠换,该突变位点在S.aureus中是首次报道。此外,还发现螺旋霉素Ⅰ能使S.aureus ATCC29213-R菌株的322个基因上调,82个基因下调,其中涉及精氨酸降解的基因arcAarcCargF表达水平分别上调35,18.05和30.84倍,涉及精氨酸合成的基因argHargG分别下调13.51和21.45倍,其综合作用减少精氨酸的内源性合成;因此,精氨酸代谢途径可能成为治疗23S RNA突变耐药金黄色葡萄球菌感染新的潜在靶点。
    Abstract: The clinical utility of macrolide antibiotics has declined due to the appearance of resistant isolates. A spiramycin I-resistant Staphylococcus aureus ATCC29213-R was induced and isolated with increasing the concentration of spiramycin I, which exhibits an A→C transversion at position 2089 in the 23S rRNA gene, which is first reported in the S. aureus. A RNA-seq based transcriptomic analysis was performed to understand the overall response of resistant bacteria to spiramycin I treatment with subinhibitory dosage. In this study, There are a total of 322 up-regulated and 82 down-regulated genes in spiramycin I-treated S. aureus ATCC29213-R and 426 up-regulated, 838 down-regulated in spiramycin I-treated S. aureus ATCC29213, which were identified differentially expressed compared to their control with a minimum 2-fold change(Q< 0. 05). Interestingly, The data showed that argH and argG transcripts, in the arginine biosynthetic pathway, were decreased by 13. 51-fold and 21. 45-fold, respectively, compared to the control, while the expression level of three genes involved in arginine catabolism, arcA, arcC, and argF, increased by 35-fold, 18. 05-fold and 30. 84-fold, respectively. The results revealed that spiramycin I could trigger the up-regulation of the genes of ACME-Arc system which allows S. aureus to survive in acidic environments of human skin. This suggesed the arginine-deiminase pathway may be a potential target for treatment of the resistant S. aureus.
  • [1] Jarvis WR,Schlosser J,Chinn RY,et al.National prevalence of methicillin-resistant Staphylococcus aureus in inpatients at US health care facilities[J].Am J Infect Control,2007,35(10):631-637.
    [2] Wallwork B,Coman W,Mackay-Sim A,et al.A double-blind,randomized,placebo-controlled trial of macrolide in the treatment of chronic rhinosinusitis[J].Laryngoscope,2006,116(2):189-193.
    [3] Gaynor M,Mankin AS.Macrolide antibiotics:binding site,mechanism of action,resistance[J].Curr Top Med Chem,2003,3(9):949-961.
    [4] Starosta AL, Karpenko VV, Shishkina AV, et al. Interplay between the ribosomal tunnel,nascent chain,and macrolides influences drug inhibition[J].Chem Biol,2010,17(5):504-514.
    [5] Nakajima Y.Mechanisms of bacterial resistance to macrolide antibiotics[J].J Infect Chemother,1999,5(2):61-74.
    [6] Fajardo A,Martinez JL.Antibiotics as signals that trigger specific bacterial responses[J].Curr Opin Microbiol,2008,11(2):161-167.
    [7] Qin N,Tan X,Jiao Y,et al.RNA-Seq-based transcriptome analysis of methicillin-resistant Staphylococcus aureus biofilm inhibition by ursolic acid and resveratrol[J].Sci Rep,2014,4:5467.
    [8] Scherl A,Francois P,Charbonnier Y,et al.Exploring glycopeptide-resistance in Staphylococcus aureus: a combined proteomics and transcriptomics approach for the identification of resistance-related markers[J].BMC Genomics,2006,7:296.
    [9] Fischer A,Yang SJ,Bayer AS,et al.Daptomycin resistance mechanisms in clinically derived Staphylococcus aureus strains assessed by a combined transcriptomics and proteomics approach[J].J Antimicrob Chemother,2011,66(8):1696-1711.
    [10] Bernardo K,Pakulat N,Fleer S,et al.Subinhibitory concentrations of linezolid reduce Staphylococcus aureus virulence factor expression[J].Antimicrob Agents Chemother,2004,48(2):546-555.
    [11] Yun SH,Choi CW,Kwon SO,et al.Quantitative proteomic analysis of cell wall and plasma membrane fractions from multidrug-resistant Acinetobacter baumannii[J].J Proteome Res,2011,10(2):459-469.
    [12] Joung DK,Joung H,Yang DW,et al.Synergistic effect of rhein in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus[J].Exp Ther Med, 2012,3(4):608-612.
    [13] Lee HH,Molla MN,Cantor CR,et al.Bacterial charity work leads to population-wide resistance[J].Nature,2010,467(7311):82-85.
    [14] Mortazavi A,Williams BA,McCue K,et al.Mapping and quantifying mammalian transcriptomes by RNA-Seq[J].Nat Methods,2008,5(7):621-628.
    [15] Robinson MD,McCarthy DJ,Smyth GK.EdgeR:a bioconductor package for differential expression analysis of digital gene expression data[J].Bioinformatics,2010,26(1):139-140.
    [16] Szklarczyk D,Franceschini A,Kuhn M,et al.The STRING database in 2011:functional interaction networks of proteins,globally integrated and scored[J].Nucleic Acids Res,2011,39:561-568.
    [17] Hansen JL,Ippolito JA,Ban N,et al.The structures of four macrolide antibiotics bound to the large ribosomal subunit[J].Mol Cell,2002,10(1):117-128.
    [18] Depardieu F,Courvalin P.Mutation in 23S rRNA responsible for resistance to 16-membered macrolides and streptogramins in Streptococcus pneumoniae[J].Antimicrob Agents Chemother,2001,45(1):319-323.
    [19] Furneri PM,Rappazzo G,Musumarra MP,et al.Two new point mutations at A2062 associated with resistance to 16-membered macrolide antibiotics in mutant strains of Mycoplasma hominis[J].Antimicrob Agents Chemother,2001,45(10):2958-2960.
    [20] Pereyre S,Guyot C,Renaudin H,et al.In vitro selection and characterization of resistance to macrolides and related antibiotics in Mycoplasma pneumoniae[J].Antimicrob Agents Chemother,2004,48(2):460-465.
    [21] Weisblum B.Erythromycin resistance by ribosome modification.antimicrob agents[J].Chemother,1995,39(3):577-585.
    [22] Charlier D.Arginine regulation in Thermotoga neapolitana and Thermotoga maritima[J].Biochem Soc Trans,2004,32(2):310-313.
    [23] Hubscher J,Jansen A,Kotte O,et al.Living with an imperfect cell wall:compensation of femAB inactivation in Staphylococcus aureus[J].BMC Genomics,2007,8:307.
    [24] Kohler C,Eiff C,Peters G,et al.Physiological characterization of a heme-deficient mutant of Staphylococcus aureus by a proteomic approach[J].J Bacteriol,2003,185(23):6928-6937.
    [25] Seggewiss J,Becker K,Kotte O,et al.Reporter metabolite analysis of transcriptional profiles of a Staphylococcus aureus strain with normal phenotype and its isogenic hemB mutant displaying the small-colony-variant phenotype[J].J Bacteriol,2006,188(22):7765-7777.
    [26] Beenken KE, Dunman PM, McAleese F, et al. Global gene expression in Staphylococcus aureus biofilms[J].J Bacteriol,2004,186(14):4665-4684.
    [27] Resch A,Rosenstein R,Nerz C,et al.Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions[J].Appl Environ Microbiol,2005,71(5):2663-2676.
    [28] Yao Y, Sturdevant DE, Otto M. Genomewide analysis of gene expression in Staphylococcus epidermidis biofilms:insights into the pathophysiology of S.epidermidis biofilms and the role of phenol-soluble modulins in formation of biofilms[J].J Infect Dis,2005,191(2):289-298.
    [29] Thurlow LR,Joshi GS,Clark JR,et al.Functional modularity of the arginine catabolic mobile element contributes to the success of USA300 methicillin-resistant Staphylococcus aureus[J].Cell Host Microbe,2013,13(1):100-107.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 刊出日期:  2017-12-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭