• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

罗丹明基类分子荧光探针在丙酮酸细胞内可视化成像中的应用

王硕, 孙晓艳, 陈金龙

王硕, 孙晓艳, 陈金龙. 罗丹明基类分子荧光探针在丙酮酸细胞内可视化成像中的应用[J]. 中国药科大学学报, 2018, 49(1): 79-86. DOI: 10.11665/j.issn.1000-5048.20180111
引用本文: 王硕, 孙晓艳, 陈金龙. 罗丹明基类分子荧光探针在丙酮酸细胞内可视化成像中的应用[J]. 中国药科大学学报, 2018, 49(1): 79-86. DOI: 10.11665/j.issn.1000-5048.20180111
WANG Shuo, SUN Xiaoyan, CHEN Jinlong. Application of rhodamine-based fluorescent molecular probes in visualization of cellular pyruvic acid[J]. Journal of China Pharmaceutical University, 2018, 49(1): 79-86. DOI: 10.11665/j.issn.1000-5048.20180111
Citation: WANG Shuo, SUN Xiaoyan, CHEN Jinlong. Application of rhodamine-based fluorescent molecular probes in visualization of cellular pyruvic acid[J]. Journal of China Pharmaceutical University, 2018, 49(1): 79-86. DOI: 10.11665/j.issn.1000-5048.20180111

罗丹明基类分子荧光探针在丙酮酸细胞内可视化成像中的应用

基金项目: 国家自然科学基金资助项目(No.21305161);江苏省自然科学基金资助项目(No.BK20130643),药物质量与安全预警教育部重点实验室开放课题资助项目(No.DQCP2015MS06)

Application of rhodamine-based fluorescent molecular probes in visualization of cellular pyruvic acid

  • 摘要: 为了进行生物体内丙酮酸含量变化的可视化研究,筛选了若干螺酰肼结构的罗丹明基探针分子,在水相中与丙酮酸分子中的活性羰基发生席夫碱反应,螺环单元自发打开,特征荧光和紫外吸收增强。研究发现,罗丹明6G酰肼对丙酮酸响应灵敏度最高,565 nm处荧光强度变化与丙酮酸浓度0.2~120 μmol/L范围内呈良好线性相关,检测限低至0.1 μmol/L,专属性高,体内常见生物分子和阴阳离子、活性氧化物等对丙酮酸的检测几乎无干扰,并在非小细胞肺肿瘤细胞A549、肾上皮细胞293T中成功实现了外源性丙酮酸的荧光成像,同时实现了经双酚A诱导的细胞内源性丙酮酸的荧光成像。
    Abstract: In order to conduct the visualized research of cellular pyruvic acid(PA), several rhodamine-based probes were designed to react with PA by a Schiff-base reaction in aqueous media and exhibit strong fluorescence emission and a pink color owing to the ring-opening of the corresponding spirolactam. The results showed that R6G-NH2 had a highest sensitive response to PA with a linearly relationship between the enhancement of fluorescence intensity at 565 nm and the concentration of PA from 0. 2 μmol/L to 120 μmol/L. According to the principle of 3σ, a limit of detection was obtained as low as 0. 1 μmol/L. Furthermore, the response of R6G-NH2 to PA was hardly affected by conventional biomolecules and ionic species. Therefore, R6G-NH2 was successfully used in fluorescence imaging of exogenous PA in non-small cell lung cancer cell A549 and renal epithelial cell 293T, and endogenous PA induced by bisphenol A in epithelial cell 293T.
  • [1] Li Q,Li S,Chen X,et al.A G-quadruplex based fluorescent oligonucleotide turn-on probe towards iodides detection in real samples[J].Food Chem,2017,230(1):432-440.
    [2] Peng T,Chen XM,Gao L,et al.A rationally designed rhodamine-based fluorescent probe for molecular imaging of peroxynitrite in live cells and tissues[J].Chem Sci,2016,7(8):5407-5413.
    [3] Ma QJ,Zhang XB,Zhao XH,et al.A highly selective fluorescent probe for Hg2+ based on a rhodamine-coumarin conjugate[J].Anal Chim Acta,2010,663(1):85-90.
    [4] Li K,Xiang Y,Wang XY,et al.Reversible photochromic system based on rhodamine B salicylaldehyde hydrazone metal complex[J].J Am Chem Soc,2014,136(4):1643-1649.
    [5] Wu YX,Li JB,Liang LH,et al.A rhodamine-appended water-soluble conjugated polymer:an efficient ratiometric fluorescence sensing platform for intracellular metal-ion probing[J].Chem Commun(Camb),2014,50(16):2040-2042.
    [6] Zhou LY,Zhang XB,Wang QQ,et al.Molecular engineering of a TBET-based two-photon fluorescent probe for ratiometric imaging of living cells and tissues[J].J Am Chem Soc,2014,136(28):9838-9841.
    [7] Gao H,Song J,Shang S,et al.Fluorescent properties and in vitro studies of new dehydroabietic acid-based diarylamines fluorescent probes[J].Front Agr Sci Eng,2017,4(1):106-115.
    [8] Liu H,Na W,Liu Z,et al.A novel turn-on fluorescent strategy for sensing ascorbic acid using graphene quantum dots as fluorescent probe[J].Biosens Bioelectron,2017,92(15):229-233.
    [9] Madrakian T, Maleki S, Gilak S, et al. Turn-off fluorescence of amino-functionalized carbon quantum dots as effective fluorescent probes for determination of isotretinoin[J].Sens Actuators B Chem,2017,427:428-435.
    [10] Collie JTB,Greaves RF,Jones OAH,et al.Vitamin B1 in critically ill patients:needs and challenges[J].Clin Chem Lab Med,2017,55(11),1652-1668.
    [11] Wu WT.Biochemistry(生物化学)[M].3rd Ed.Beijing:China Medical Science and Technology Press,2015:351-365.
    [12] Olsen C.An enzymatic fluorimetric micromethod for the determination of acetoacetate,β-hydroxybutyrate,pyruvate and lactate[J].Clin Chim Acta,1971,33(2):293-300.
    [13] Horowitz A,Meller R,Moortgat GK.The UV-VIS absorption cross sections of the α-dicarbonyl compounds:pyruvic acid,biacetyl and glyoxal[J].J Photochem Photobiol A Chem,2001,146(1):19-27.
    [14] Pérez-Ruiz T,MartíNez-Lozano C,Tomás V,et al.Chemiluminescence determination of citrate and pyruvate and their mixtures by the stopped-flow mixing technique[J].Anal Chim Acta,2003,485(1):63-72.
    [15] Ewaschuk JB,Naylor JM,Barabash WA,et al.High-performance liquid chromatographic assay of lactic,pyruvic and acetic acids and lactic acid stereoisomers in calf feces,rumen fluid and urine[J].J Chromatogr B,2004,805(2):347-351.
    [16] Hautala E,Weaver ML.Separation and quantitative determination of lactic,pyruvic,fumaric,succinic,malic,and citric acids by gas chromatography[J].Anal Biochem,1969,30(1):32-39.
    [17] Li L,Li GX,Dai QW.Analysis of the content of phenylpyruvic acid in mixture by colorimetry[J].Chem Reagents(化学试剂),2002,24(1):22-23.
    [18] Lou LW,Gao NF.Determination of pyruvate by ultraviolet spectrophotometry[J].Anal Lab(分析试验室),2005,24(4):11-13.
    [19] Zhang Z,Deng CQ,Guo T,et al.Synthesis and analytical application of a rhodamine-based fluorescent probe for hypochlorous acid[J].J Instrum Anal(分析测试学报),2014,33(7):810-814.
    [20] Zhou L,Liu W,Di B,et al.Synthesis and application of a fluorescent molecular probe for rapid detection of sulfur dioxide residues in traditional Chinese herbs[J].J China Pharm Univ(中国药科大学学报),2015,46(4):444-449.
    [21] Jiao CH,He Y,Jin PW,et al.A turn-on fluorescent probe for α-ketoglutaric acid based on rhodamine B[J].Imag Sci Photochem(影像科学与光化学),2015,33(3):195-202.
    [22] Wang JT.Organic Chemistry(有机化学)[M].2nd Ed.Tianjin:Nankai University Press,2009:348-350.
    [23] Guo AG.Basic Biochemistry(基础生物化学)[M].2nd Ed.Beijing:Higher Education Press,2013:247-254.
    [24] Shi XY,Wang Z,Liu L,et al.Low concentrations of bisphenol a promote human ovarian cancer cell proliferation and glycolysis-based metabolism through the estrogen receptor-α pathway[J].Chemosphere,2017,185:361-367.
计量
  • 文章访问数:  929
  • HTML全文浏览量:  0
  • PDF下载量:  1583
  • 被引次数: 0
出版历程
  • 刊出日期:  2018-02-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭