• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

石墨烯量子点荧光猝灭-恢复法测定Cu2+与谷胱甘肽的含量

宋凤娟, 艾永玲, 钟文英, 王菁

宋凤娟, 艾永玲, 钟文英, 王菁. 石墨烯量子点荧光猝灭-恢复法测定Cu2+与谷胱甘肽的含量[J]. 中国药科大学学报, 2018, 49(1): 87-92. DOI: 10.11665/j.issn.1000-5048.20180112
引用本文: 宋凤娟, 艾永玲, 钟文英, 王菁. 石墨烯量子点荧光猝灭-恢复法测定Cu2+与谷胱甘肽的含量[J]. 中国药科大学学报, 2018, 49(1): 87-92. DOI: 10.11665/j.issn.1000-5048.20180112
SONG Fengjuan, AI Yongling, ZHONG Wenying, WANG Jing. Detection of copper ions and glutathione based on off-on fluorescent graphene quantum dots[J]. Journal of China Pharmaceutical University, 2018, 49(1): 87-92. DOI: 10.11665/j.issn.1000-5048.20180112
Citation: SONG Fengjuan, AI Yongling, ZHONG Wenying, WANG Jing. Detection of copper ions and glutathione based on off-on fluorescent graphene quantum dots[J]. Journal of China Pharmaceutical University, 2018, 49(1): 87-92. DOI: 10.11665/j.issn.1000-5048.20180112

石墨烯量子点荧光猝灭-恢复法测定Cu2+与谷胱甘肽的含量

基金项目: 国家自然科学基金资助项目(No.21405178);江苏省自然科学基金资助项目(No.BK20161455);中央高校基本科研业务费专项基金资助项目(No.2016ZZD004);中国药科大学医药生物功能材料重点实验室开放基金资助项目

Detection of copper ions and glutathione based on off-on fluorescent graphene quantum dots

  • 摘要: 通过在温和条件下氧化石墨粉的方法合成高分散性、高荧光强度的石墨烯量子点(GQDs),并运用此GQDs对Cu2+和GSH具有荧光猝灭-恢复的效应,建立对这两种物质简便、快捷的检测方法。Cu2+与GSH的浓度分别在1.0~10.0 mmol/L、0.1~1.0 mmol/L范围内与GQDs的荧光强度呈良好线性关系,检测限分别为0.01和0.1 mmol/L。此外,在实际样品的检测中,加标法测得的回收率分别为93%~101%、96%~107%。该方法操作简便,测定准确,精密度高,且常见的金属离子及潜在共存物质对Cu2+与GSH的检测均没有干扰。
    Abstract: We developed a rapid method to detect Cu2+ and glutathione(GSH)based on the fluorescence quenching-recovery properties of graphene quantum dots(GQDs), which were synthesized by the gentle oxidation of graphite powder. The results revealed that the fluorescence intensity of GQDs versus concentration of Cu2+ and GSH had good linearity, with the detection limits of 0. 01 and 0. 1 mmol/L, respectively. The fluorescence quenching was linearly proportional to the concentrations of Cu2+ ranging from 1. 0 to 10. 0 mmol/L; the fluorescence intensity was linearly enhanced with the concentrations of GSH ranging from 0. 1 to 1. 0 mmol/L. In addition, the method was successfully applied to the determination of real samples with recoveries falling between 93%-101% and 96%-107%, respectively. This method is simple, accurate and precise. There was no interference with other familiar co-existing metal ions and potential materials.
  • [1] Ji HF,Zhang HY.A new strategy to combat Alzheimer′s disease combining radical-scavenging potential with metal-protein-attenuating ability in one molecule[J].Bioorg Med Chem Lett,2005,15(1):21-24.
    [2] Tang LJ,Li FF,Liu MH,et al.A new rhodamine B derivative as a colorimetric chemosensor for recognition of copper(II)ion[J].Bull Korean Chem Soc,2010,31(11):3212-3216.
    [3] Sahin CA, Tokgoz I. A novel solidified floating organic drop microextraction method for preconcentration and determination of copper ions by flow injection flame atomic absorption spectrometry[J].Anal Chim Acta,2010,667(1/2):83-87.
    [4] Otero-Romani J, Moreda-Pineiro A, Bermejo-Barrera A, et al.Evaluation of commercial C18 cartridges for trace elements solid phase extraction from seawater followed by inductively coupled plasma-optical emission spectrometry determination[J].Anal Chim Acta,2005,536(1/2):213-218.
    [5] Grek CL,Zhang J,Manevich Y,et al.Causes and consequences of cysteine S-glutathionylation[J].J Biol Chem,2013,288(37):26497-26504.
    [6] Yu F,Li P,Wang BS,et al.Reversible near-infrared fluorescent probe introducing tellurium to mimetic glutathione peroxidase for monitoring the redox cycles between peroxynitrite and glutathione in vivo[J].J Am Chem Soc,2013,135(20):7674-7680.
    [7] Samarasinghe KTG,Godage DNPM,VanHecke GC,et al.Metabolic synthesis of clickable glutathione for chemoselective detection of glutathionylation[J].J Am Chem Soc,2014,136(33):11566-11569.
    [8] Chang RCC,So KF.Use of anti-aging herbal medicine,lycium barbarum,against aging-associated diseases.What do we know so far[J]?Cell Mol Neurobiol,2008,28(5):643-652.
    [9] Hughes TB,Miller GP,Swamidass SJ.Site of reactivity models predict molecular reactivity of diverse chemicals with glutathione[J].Chem Res Toxicol,2015,28(4):797-809.
    [10] Assensi M,Sastre J,Pallardó FV,et al.A high performance liquid chromatography method for measurement of oxidized glutathione in biological samples[J].Anal Biochem,1994,217(2):323-328.
    [11] Zhao M,Zhou MF,Feng H,et al.Determination of tryptophan,glutathione,and uric acid in human whole blood extract by capillary electrophoresis with a one-step electrochemically reduced graphene oxide modified microelectrode[J].Chromatographia,2016,79(13/14):911-918.
    [12] Wang Y,Lu J,Tang LH,et al.Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds[J].Anal Chem,2009,81(23):9710-9715.
    [13] Li XM,Rui MC,Song JZ,et al.Carbon and graphene quantum dots for optoelectronic and energy devices:a review[J].Adv Funct Mater,2015,25(31):4929-4947.
    [14] Zhao LM,Chen LN,Zhao SL.Detection of ascorbic acid by fluorescence probe based on graphene quantum dots[J].Chin J Lumin(发光学报),2017,38(1):124-131.
    [15] Hu Y,Heo CH,Kim G,et al.One-photon and two-photon sensing of biothiols using a bis-pyrene-Cu(II)ensemble and its application to image GSH in the cells and tissues[J].Anal Chem,2015,87(6):3308-3313.
    [16] You GR,Jang HJ,Jo TG,et al.A novel displacement-type colorimetric chemosensor for the detection of Cu2+ and GSH in aqueous solution[J].RSC Adv,2016,6(78):74400-74408.
    [17] Qian ZS,Shan XY,Chai LJ,et al.A fluorescent nanosensor based on graphene quantum dots-aptamer probe and graphene oxide platform for detection of lead(II)ion[J].Biosens Bioelectron,2015,68:225-231.
    [18] Li Z,Wang Y,Ni YN,et al.A rapid and label-free dual detection of Hg(II)and cysteine with the use of fluorescence switching of graphene quantum dots[J].Sensor Actuat B-Chem,2015,207:490-497.
计量
  • 文章访问数:  793
  • HTML全文浏览量:  0
  • PDF下载量:  1293
  • 被引次数: 0
出版历程
  • 刊出日期:  2018-02-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭