• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

微生物疫苗在1型糖尿病中的应用

贺冬梅, 尤琪, 吴洁

贺冬梅, 尤琪, 吴洁. 微生物疫苗在1型糖尿病中的应用[J]. 中国药科大学学报, 2018, 49(2): 158-164. DOI: 10.11665/j.issn.1000-5048.20180204
引用本文: 贺冬梅, 尤琪, 吴洁. 微生物疫苗在1型糖尿病中的应用[J]. 中国药科大学学报, 2018, 49(2): 158-164. DOI: 10.11665/j.issn.1000-5048.20180204
HE Dongmei, YOU Qi, WU Jie. Application of microbial vaccines in type 1 diabetes mellitus[J]. Journal of China Pharmaceutical University, 2018, 49(2): 158-164. DOI: 10.11665/j.issn.1000-5048.20180204
Citation: HE Dongmei, YOU Qi, WU Jie. Application of microbial vaccines in type 1 diabetes mellitus[J]. Journal of China Pharmaceutical University, 2018, 49(2): 158-164. DOI: 10.11665/j.issn.1000-5048.20180204

微生物疫苗在1型糖尿病中的应用

基金项目: 国家自然科学基金资助项目(No.81673340,No.81172973);江苏高校优势学科建设工程资助项目(PAPD)

Application of microbial vaccines in type 1 diabetes mellitus

  • 摘要: 1型糖尿病(T1DM)是由抗原特异性T淋巴细胞对β细胞靶向破坏,引起胰岛素绝对缺乏而导致的自身免疫性疾病,患者需终身进行胰岛素治疗,其发病机制尚不完全清楚,但多项数据显示感染性疾病发病率的下降伴随着过敏和自身免疫疾病发病率的上升,因而推测环境因素在T1DM的发生中起到重要作用。现已有多种细菌、寄生虫、病毒及其成分在动物模型中被证明可以预防T1DM,因此,通过微生物疫苗进行早期免疫刺激,进而诱导自身免疫耐受,有望成为预防T1DM安全有效的新方法。本文对临床和动物研究中的1型糖尿病微生物疫苗进行综述,主要从微生物的灭活疫苗、减毒活疫苗、亚单位疫苗、核酸疫苗和活载体疫苗进行概述,并讨论了各类疫苗可能的作用机制。
    Abstract: Type 1 diabetes mellitus(T1DM)is an autoimmune disease characterized by the destruction of β cells and insulin absolutely deficiency upon antigen-specific T lymphocyte attack. The patients with T1DM need insulin therapy for the whole life. Although the mechanism of T1DM is still unclear now, environmental factors play a critical role in the T1DM development because the incidence of infectious diseases is opposite to that of allergies and autoimmune diseases. So far, a variety of bacteria, parasites, viruses and their composition have been proved functional in the prevention of T1DM in animal models. Therefore, microbial vaccine, if administrated early, can induce immune tolerance and prevent the destruction of pancreatic islet β cells, which is expected to be safe and effective novel approach in treating T1DM. This paper summarizes several types of T1DM microbial vaccine and their potential mechanisms including inactivated vaccine, attenuated vaccine, subunit vaccine, DNA vaccine and living-vector vaccine.
  • [1] Mejía-León ME,Barca AM.Diet,microbiota and immune system in type 1 diabetes development and evolution[J].Nutrients,2015,7(11):9171-9184.
    [2] Campbell-Thompson M,Fu A,Kaddis JS,et al.Insulitis and β-cell mass in the natural history of type 1 diabetes[J].Diabetes,2016,65(3):719-731.
    [3] Lu SP,Jin L,Wu J.Clinical development of type 1 diabetes vaccine[J].J China Pharm Univ(中国药科大学学报),2014,45(6):625-631.
    [4] Cilião HL,Ribeiro DL,Camargo-Godoy RB,et al.Cytotoxic and genotoxic effects of high concentrations of the immunosuppressive drugs cyclosporine and tacrolimus in MRC-5 cells[J].Exp Toxicol Pathol,2015,67(2):179-187.
    [5] Larsson HE,Lernmark Å.Vaccination against type 1 diabetes[J].J Intern Med,2011,269(6):626-635.
    [6] Brown K,Godovannyi A,Ma C,et al.Prolonged antibiotic treatment induces a diabetogenic intestinal microbiome that accelerates diabetes in NOD mice[J].Isme Journal,2016,10(2):321-332.
    [7] Tun HM,Konya T,Takaro TK,et al.Exposure to household furry pets influences the gut microbiota of infant at 3-4 months following various birth scenarios[J].Microbiome,2017,5(1):40.
    [8] Livanos AE,Greiner TU,Vangay P,et al.Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice[J].Nat Microbiol,2016,1(11):16140.
    [9] Knip M,Honkanen J.Modulation of type 1 diabetes risk by the intestinal microbiome[J].Curr Diab Rep,2017,17(11):105.
    [10] Op de Beeck A,Eizirik DL.Viral infections in type 1 diabetes mellitus-why the β cells[J]?Nat Rev Endocrinol,2016,12(5):263-273.
    [11] Kostic, Aleksandar, Gevers, et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes[J].Cell Host Microb,2015,17(2):260-273.
    [12] Johnson AT.The hygiene hypothesis[J].IEEE Pulse,2016,7(1):50-51.
    [13] Bach JF.The hygiene hypothesis in autoimmunity:the role of pathogens and commensals[J] Nat Rev Immunol,2018,18(2):105-120.
    [14] Dénes B,Fodor I,Langridge WH.Persistent suppression of type 1 diabetes by a multicomponent vaccine containing a cholera toxin B subunit-autoantigen fusion protein and complete Freund′s adjuvant[J].Clin Dev Immunol,2013,2013(12):578786.
    [15] Mori Y,Kodaka T,Kato T,et al.Critical role of IFN-γ in CFA-mediated protection of NOD mice from diabetes development[J].Int Immunol,2009,21(11):1291-1299.
    [16] Lee IF,Qin H,Trudeau J,et al.Regulation of autoimmune diabetes by complete Freund′s adjuvant is mediated by NK cells[J].J Immunol,2004,172(2):937-942.
    [17] Petrovsky N.Immunomodulation with microbial vaccines to prevent type 1 diabetes mellitus [J].Nat Rev Endocrinol,2010,6(3):131-138.
    [18] Silva DG,Charlton B,Cowden W,et al.Prevention of autoimmune diabetes through immunostimulation with Q fever complement-fixing antigen[J].Ann N Y Acad Sci,2003,1005(1):423-430.
    [19] White M,Webster G,Leonard F,et al.Innate IFN-γ ameliorates experimental autoimmune encephalomyelitis and promotes myeloid expansion and PDL-1 expression[J].Sci Rep,2018,8(1):259.
    [20] Luca S,Mihaescu T.History of BCG vaccine[J].Maedica,2013,8(1):53.
    [21] Iqbal NT,Hussain R.Non-specific immunity of BCG vaccine:a perspective of BCG immunotherapy[J].Trials Vaccinol,2014,3(C):143-149.
    [22] Surendar J,Indulekha K,Hoerauf A,et al.Immunomodulation by helminths:similar impact on type 1 and type 2 diabetes[J]?Parasite Immunol,2017,39(5):e12401.
    [23] Finlay CM,Stefanska AM,Walsh KP,et al.Helminth products protect against autoimmunity via innate type 2 cytokines IL-5 and IL-33,which promote eosinophilia[J].J Immunol,2016,196(2):703-714.
    [24] Hernandez JL, Leung G, McKay DM. Cestode regulation of inflammation and inflammatory diseases[J].Int J Parasitol,2013,43(3/4):233-243.
    [25] Fleming JO,Weinstock JV.Clinical trials of helminth therapy in autoimmune diseases:rationale and findings[J].Parasite Immunol,2015,37(6):277-292.
    [26] Tracy S,Drescher KM,Chapman NM,et al.Toward testing the hypothesis that group B coxsackieviruses(CVB)trigger insulin-dependent diabetes:inoculating nonobese diabetic mice with CVB markedly lowers diabetes incidence[J].J Virol,2002,76(23):12097-12111.
    [27] Filippi CM,Estes EA,Oldham JE,et al.Immunoregulatory mechanisms triggered by viral infections protect from type 1 diabetes in mice[J].J Clin Invest,2009,119(6):1515-1523.
    [28] Mccall KD,Thuma JR,Courreges MC,et al.Toll-like receptor 3 is critical for coxsackievirus B4-induced type 1 diabetes in female NOD mice[J].Endocrinology,2015,156(2):453-461.
    [29] Bignon A, Watt AP,Linterman MA.Escherichia coli heat-labile enterotoxin B limits T cells activation by promoting immature dendritic cells and enhancing regulatory T cell function[J].Front Immunol,2017,8:560.
    [30] Ola TO,Williams NA.Protection of non-obese diabetic mice from autoimmune diabetes by Escherichia coli heat-labile enterotoxin B subunit[J].Immunology,2006,117(2):262-270.
    [31] Xuan J,Wang L,Yin H,et al.The cost-effectiveness of OM-85 in managing respiratory tract infections in China[J].J Med Econ,2015,18(3):167-172.
    [32] Alyanakian MA, Grela F, Aumeunier A, et al. Transforming growth factor-beta and natural killer T-cells are involved in the protective effect of a bacterial extract on type 1 diabetes[J].Diabetes,2006,55(1):179-185.
    [33] Hartmann B,Bellmann K,Ghiea I,et al.Oral insulin for diabetes prevention in NOD mice:potentiation by enhancing Th2 cytokine expression in the gut through bacterial adjuvant[J].Diabetologia,1997,40(8):902-909.
    [34] Aude A, Françoise G, Abdulraouf R, et al. Systemic Toll-like receptor stimulation suppresses experimental allergic asthma and autoimmune diabetes in NOD mice[J].Plos One,2010,5(7):e11484.
    [35] Caramalho I,Rodrigues-Duarte L,Perez A,et al.Regulatory T cells contribute to diabetes protection in lipopolysaccharide-treated non-obese diabetic mice[J].Scand J Immunol,2011,74(6):585-595.
    [36] Wang J,Cao H,Wang H,et al.Multiple mechanisms involved in diabetes protection by lipopolysaccharide in non-obese diabetic mice[J].Toxicol Appl Pharmacol,2015,285(3):149-158.
    [37] Gianchecchi E, Fierabracci A. On the pathogenesis of insulin-dependent diabetes mellitus:the role of microbiota[J].Immunol Res,2017,65(1):242-256.
    [38] Shintani S,Satoh J,Seino H,et al.Mechanism of action of a streptococcal preparation(OK-432)in prevention of autoimmune diabetes in NOD mice.Suppression of generation of effector cells for pancreatic B cell destruction[J].J Immunol,1990,144(1):136-141.
    [39] Burrows MP,Volchkov P,Kobayashi KS,et al.Microbiota regulates type 1 diabetes through Toll-like receptors[J].Proc Natl Acad Sci U S A,2015,112(32):9973-9977.
    [40] Quintana FJ,Rotem A,Carmi P,et al.Vaccination with empty plasmid DNA or CpG oligonucleotide inhibits diabetes in nonobese diabetic mice:modulation of spontaneous 60-kDa heat shock protein autoimmunity[J].J Immunol,2000,165(11):6148-6155.
    [41] Lee BJ,Kim SK,Kim MK,et al.Limited effect of CpG ODN in preventing type 1 diabetes in NOD mice[J].Yonsei Med J,2005,46(3):341-346.
    [42] Husseiny MI,Rawson J,Kaye A,et al.An oral vaccine for type 1 diabetes based on live attenuated Salmonella[J].Vaccine,2014,32(20):2300-2307.
    [43] Duan FF, Liu JH, March JC. Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes[J].Diabetes,2015,64(5):1794-1803.
    [44] Robert S,Gysemans C,Takiishi T,et al.Oral delivery of glutamic acid decarboxylase(GAD)-65 and IL10 by Lactococcus lactis reverses diabetes in recent-onset NOD mice[J].Diabetes,2014,63(8):2876-2887.
    [45] Saxena A, Yagita H, Donner TW, et al. Expansion of FasL-expressing CD5+ B cells in type 1 diabetes patients[J].Front Immunol,2017,8(3):402.
    [46] Osińska I,Popko K,Demkow U.Perforin:an important player in immune response[J].Cent Eur J Immunol,2014,39(1):109-115.
    [47] Klocke K,Sakaguchi S,Holmdahl R,et al.Induction of autoimmune disease by deletion of CTLA-4 in mice in adulthood[J].Proc Natl Acad Sci U S A,2016,113(17):E2383-E2392.
    [48] Bednar KJ, Tsukamoto H, Kachapati K, et al. Reversal of new-onset type 1 diabetes with an agonistic TLR4/MD-2 monoclonal antibody[J].Diabetes,2015,64(10):3614-3626.
    [49] Mellati M,Eaton KD,Brooks-Worrell BM,et al.Anti-PD-1 and Anti-PDL-1 monoclonal antibodies causing type 1 diabetes[J].Diabetes Care,2015,38(9):e137.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 刊出日期:  2018-04-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭