• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

Caco-2细胞单层模型中水飞蓟宾吸收机制研究

胡林, 童焕, 丁茹, 王湛博, 尤淋君, 杨劲

胡林, 童焕, 丁茹, 王湛博, 尤淋君, 杨劲. Caco-2细胞单层模型中水飞蓟宾吸收机制研究[J]. 中国药科大学学报, 2018, 49(2): 202-208. DOI: 10.11665/j.issn.1000-5048.20180210
引用本文: 胡林, 童焕, 丁茹, 王湛博, 尤淋君, 杨劲. Caco-2细胞单层模型中水飞蓟宾吸收机制研究[J]. 中国药科大学学报, 2018, 49(2): 202-208. DOI: 10.11665/j.issn.1000-5048.20180210
HU Lin, TONG Huan, DING Ru, WANG Zhanbo, YOU Linjun, YANG Jin. Absorption mechanism of silybin in human intestinal Caco-2 cells[J]. Journal of China Pharmaceutical University, 2018, 49(2): 202-208. DOI: 10.11665/j.issn.1000-5048.20180210
Citation: HU Lin, TONG Huan, DING Ru, WANG Zhanbo, YOU Linjun, YANG Jin. Absorption mechanism of silybin in human intestinal Caco-2 cells[J]. Journal of China Pharmaceutical University, 2018, 49(2): 202-208. DOI: 10.11665/j.issn.1000-5048.20180210

Caco-2细胞单层模型中水飞蓟宾吸收机制研究

Absorption mechanism of silybin in human intestinal Caco-2 cells

  • 摘要: 通过建立Caco-2细胞单层模型考察了不同浓度水平的水飞蓟宾和水飞蓟宾葡甲胺的双向跨膜通透性并研究其吸收机制。开发HBSS缓冲液中水飞蓟宾、普萘洛尔和阿替洛尔的LC/MS/MS检测方法,检测实验样品的浓度,并计算表观渗透系数(Papp)。当Caco-2细胞培养到第21天时,对所建立的Caco-2细胞模型进行验证:跨膜电阻值(TEER)大于350 Ω·cm2,荧光黄的Papp远远小于1×10-7 cm/s,阳性对照药阿替洛尔和普萘洛尔的Papp与文献中报道的相近,表明Caco-2细胞单层模型建立成功。3个浓度水平的水飞蓟宾(5,20,50 μg/mL)Papp(AP-BL)均大于2×10-6 cm/s,证明水飞蓟宾的通透性良好。Papp(BL-AP)Papp(AP-BL)的比值大于2,说明在水飞蓟宾吸收过程中有外排转运体的参与。水飞蓟宾葡甲胺的Papp与水飞蓟宾的基本一致,成盐对于水飞蓟宾的跨膜通透性没有改变。结果表明,水飞蓟宾为跨膜通透性良好药物,其溶解度低,在生物药剂学分类系统(BCS)分类上为Ⅱ类。水飞蓟宾在胃肠道中的释放是其吸收过程的重要影响因素。
    Abstract: The aim of this paper was to investigate the absorption mechanism of silybin(SLB)in Caco-2 cells. Concentrations of samples in the study were determined by developing LC/MS/MS method of SLB, propranolol and atenolol in HBSS buffer to calculate apparent permeability coefficient(Papp). When Caco-2 cells were cultured to the 21st day, the TEER were above 350 Ω ·cm2. The Papp of Lucifer yellow was far less than 1 × 10-7 cm/s. As the positive control drugs, The Papp of atenolol and propranolol were similar to those reported in the literature, indicating that the Caco-2 monolayer model was successfully established in this experiment. The Papp(AP-BL) of SLB at 5, 20, and 50 μg/mL were all more than 2×10-6 cm/s, which showed that SLB was a moderately permeable drug. The efflux ratio was greater than 2 indicating the efflux transporter may be involved in the absorption process of SLB. The Papp of silybin-N-meglumine was similar to that of SLB, suggesting that salt formation did not alter the membrane permeability of SLB. In conclusion, the membrane permeability of SLB is good, and its solubility is low. SLB is a BCS class 2 drug. The release of SLB in the gastrointestinal tract is an important factor in its absorption process.
  • [1] Bijak, M. Silybin, a major bioactive component of milk thistle(silybum marianum l.gaernt.)-chemitry,bioavailability,and metabolism [J].Molecules,2017,22(11):1942.
    [2] Chu Y,Li W,Han JP,et al.Study on pharmacokinetics of silibinin capsule in Chinese healthy volunteers [J].Chin Pharmacol Bull,2009,25(12):1669-1672.
    [3] Javed S,Kohli K,Ali M.Reassessing bioavailability of silymarin [J].Altern Med Rev,2011,16(3):239-249.
    [4] Xu D,Ni R,Sun W,et al.In vivo absorption comparison of nanotechnology based silybin A tablets with its water-soluble derivative [J].Drug Dev Ind Pharm,2015,41(4):552-559.
    [5] Yang QX,Ma FJ,Zhang LL,et al.Absorption characteristics of silybin-phospholipid complex by rat intestine [J].Acad J Second Military Med Univ,2009,30(11):1288-1291.
    [6] Luan LB,Zhan N.The absorption characteristics of silybinin small intestine of rat [J].Acta Pharm Sin,2006,41(2):138-141.
    [7] Wang Y,Zhang D,Liu Z,et al.In vitro and in vivo evaluation of silybin A nanosuspensions for oral and intravenous delivery [J].Nanotechnology,2010,21(15):155-168.
    [8] Smetanová L,Štětinová V,Svoboda Z,et al.Caco-2 cells,biopharmacrutics classification system(BCS)and biowaiver [J].Acta Medica(Hradec Králové),2011,54(1):3-8.
    [9] Wuyts B,Riethorst D,Brouwers J,et al.Evaluation of fasted state human intestinal fluid as apical solvent system in the Caco-2 absorption model and comparison with FaSSIF[J].Eur J Pharm Sci,2015(67):126-135.
    [10] Waterbeemd H,Lennernäs H,Artursson P.Drug Bioavailability(药物生物利用度)[M].Beijing:Beijing Chemical Industry Press,2007:82.
    [11] FDA.Guidance for industry bioanalytical method validation[S].2013:1-11.
    [12] Srinivasan B,Kolli AR,Esch MB,et al.TEER measurement techniques for in vitro barrier model systems [J].Jala J Lab Autom,2015,20(2):107-126.
    [13] Artursson P.Epithelial transport of drugs in cell culture I:a model for studying the passive diffusion of drugs over intestinal absorbtive(Caco-2)cells[J].J Pharm Sci-US,1990,79(6):476-482.
    [14] Artursson P,Palm K,Luthman K.Caco-2 monolayers in experimental and theoretical predictions of drug transport [J].Adv Drug Deliver Rev,2001,46(1/2/3):27-43.
    [15] Tan ZR,Zhou YX,Liu J,et al.The influence of ABCB1 polymorphism C3435T on the pharmacokinetics of silybinin [J].J Clin Pharm Ther,2015,40(6):685-688.
    [16] Krishna R,Yu L.Biopharmaceutics Applications in Drug Development(生物药剂学在药物研发中的应用)[M].Beijing:Peking University Medical Press,2012:36.
计量
  • 文章访问数:  827
  • HTML全文浏览量:  7
  • PDF下载量:  1898
  • 被引次数: 0
出版历程
  • 刊出日期:  2018-04-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭