高级检索

罗汉果苷ⅢE的酶法合成

Enzymatic synthesis of mogroside IIIE

  • 摘要: 为开发罗汉果苷ⅢE的简易制备方法,为开发罗汉果苷类甜味剂提供参考依据。本研究以罗汉果苷Ⅴ为探针筛选糖苷水解酶库,获得了能够区域选择性合成罗汉果苷ⅢE的CPU-GH17,通过考察异丙基硫代半乳糖苷(IPTG)浓度、诱导温度和时间等参数建立了CPU-GH17的高效可溶性表达条件:0.4 mmol/L IPTG、15 ℃和12 h。在此基础上,针对反应pH、温度、酶量、底物浓度以及反应时间等参数进行系统优化,最终确定pH 6.0、45 ℃、3 U/mL酶、5 mg/mL底物和20 h时,罗汉果苷Ⅴ可以完全转化成罗汉果苷ⅢE。本研究成功地开发了基于CPU-GH17的罗汉果苷ⅢE的酶法合成新工艺,并验证了其规模化生产的可行性。

     

    Abstract: The aim was to develop the simple preparation method of mogroside IIIE, and to lay the foundation for the development of the mogroside sweeteners. In the present study, the glycosidase CPU-GH17, which can regio-selectively biosynthesize mogroside IIIE from mogroside V, was screened from the established library of glycosidases. Then, the soluble expression condition of CPU-GH17 in E. coli was exploited by investigating isopropyl β-D-thiogalactoside(IPTG)concentration, culture temperature and induction time, and 0. 4 mmol/L IPTG, 15 °C and 12 h was used as optimal condition. The result showed that mogroside V could be completely converted into mogroside IIIE under the conditions of pH 6. 0, 45 °C, 3 U/mL enzyme loading, 5 mg/mL substrate concentration for 20 h. In conclusion, a biosynthetic system for the regio-selective preparation of mogroside IIIE by recombinant CPU-GH17 was successfully established and verified at a preparative scale.

     

/

返回文章
返回