高级检索

基于双重信号放大的电化学免疫法对前列腺特异性抗原的检测

李雪, 艾永玲, 何群叶, 杨功俊, 王菁

李雪, 艾永玲, 何群叶, 杨功俊, 王菁. 基于双重信号放大的电化学免疫法对前列腺特异性抗原的检测[J]. 中国药科大学学报, 2018, 49(4): 433-440. DOI: 10.11665/j.issn.1000-5048.20180408
引用本文: 李雪, 艾永玲, 何群叶, 杨功俊, 王菁. 基于双重信号放大的电化学免疫法对前列腺特异性抗原的检测[J]. 中国药科大学学报, 2018, 49(4): 433-440. DOI: 10.11665/j.issn.1000-5048.20180408
LI Xue, AI Yongling, HE Qunye, YANG Gongjun, WANG Jing. Detection of prostate specific antigen-based on dual signal amplified electrochemical immunoassay[J]. Journal of China Pharmaceutical University, 2018, 49(4): 433-440. DOI: 10.11665/j.issn.1000-5048.20180408
Citation: LI Xue, AI Yongling, HE Qunye, YANG Gongjun, WANG Jing. Detection of prostate specific antigen-based on dual signal amplified electrochemical immunoassay[J]. Journal of China Pharmaceutical University, 2018, 49(4): 433-440. DOI: 10.11665/j.issn.1000-5048.20180408

基于双重信号放大的电化学免疫法对前列腺特异性抗原的检测

基金项目: 国家自然科学基金资助项目(No.21775165);江苏省自然科学基金资助项目(No.BK20161455);中国药科大学药学基地科研训练及科研能力提高项目资助(No.J1310032)

Detection of prostate specific antigen-based on dual signal amplified electrochemical immunoassay

  • 摘要: 以谷胱甘肽修饰的CdTe量子点(GSH-CdTe QDs)与金纳米粒(AuNPs)形成复合材料(AuNPs@GSH-CdTe)为信号标记物,并在还原氧化石墨烯(rGO)和AuNPs双重信号放大的作用下,建立了一种高灵敏检测前列腺特异性抗原(PSA)的三明治免疫夹心式电化学方法。在rGO/AuNPs表面固定二抗蛋白(Ab2),捕获目标物PSA和标记有一抗蛋白(Ab1)的AuNPs@GSH-CdTe信号物,形成“三明治”免疫夹心结构。经HNO3溶解后,采用方波溶出伏安法(SWSV)测定酸解的Cd2+的峰电流用于定量分析PSA。其中AuNPs较大的比表面积以及较好的生物相容能力,达到了成功装载抗体以及放大信号的效果,同时具有较大表面积的rGO起到了协同放大的作用。所构建的免疫分析方法实现了对肿瘤标志物PSA的检测,其线性范围为0.5~200 ng/mL,检测限为5.0 pg/mL,并且该方法专属性、重复性以及稳定性好。此外,在实际样品的检测中,加标样回收率为98.20%~106.2%,结果准确度良好,为检测PSA提供了准确可靠且灵敏度高的新方法。
    Abstract: A sandwiched electrochemical immunoassay based on the AuNPs@GSH-CdTe as a signal label, which formed by GSH-CdTe QDs and AuNPs, with dual signal amplified by reduced graphene oxide and AuNPs was proposed for the sensitive detection of prostate specific antigen(PSA). Through a sandwich immunoreaction, the target PSA and AuNPs@GSH-CdTe labeled Ab1 were captured to rGO/AuNPs-Ab2 surface. After the HNO3-dissolution step, square wave stripping voltammetry(SWSV)analysis of the captured CdTe QDs was used to quantify the concentration of PSA. In this system, AuNPs possessedlarge specific surface and good biocompatibility, which could effectively expand the amount of antigen and GSH-CdTe QDs loading and signals amplifying, while rGO played a synergistic amplification role due to its large specific surface. The proposed method showed good linearity ranging from 0. 5 to 200 ng/mL with the detection limits of 5. 0 pg/mL. It also showed excellent selectivity, good reproducibility, satisfactory stability. In addition, the method was successfully applied to the determination of real samples. The result was satisfactory and the recovery could fall in 98. 20%- 106. 2%, which represented a novel approach for versatile detection of tumor markers.
  • [1] Jie GF,Huang HP,Sun XL,et al.Electrochemiluminescence of CdSe quantum dots for immunosensing of human prealbumin[J].Biosens Bioelectron,2008,23(12):1896-1899.
    [2] Ertürk G, Özen H, Tümer MA, et al. Microcontact imprinting based surface plasmon resonance(SPR)biosensor for real-time and ultrasensitive detection of prostate specific antigen(PSA)from clinical samples[J].Sensor Actuat B-Chem,2016,224:823-832.
    [3] Wei Q,Zhao YF,Xu CX,et al.Nanoporous gold film based immunosensor for label-free detection of cancer biomarker[J].Biosens Bioelectron,2011,26(8):3714-3718.
    [4] Wang R,Wang AJ,Liu WD,et al.A novel label-free electrochemical immunosensor for ultra-sensitively detecting prostate specific antigen based on the enhanced catalytic currents of oxygen reduction catalyzed by core-shell Au@Pt nanocrystals[J].Biosens Bioelectron,2018,102:276-281.
    [5] Xue B,Deng DW,Cao J,et al.Synthesis of violet-near-infrared-emitting quantum dots using N-acetyl-L-cysteine as ligand[J].J China Pharm Univ(中国药科大学学报),2010,41(5):456-461.
    [6] Wang J,Shan Y,Xu JJ,et al.Gold nanoparticle enhanced electrochemiluminescence of CdS thin films for ultrasensitive thrombin detection[J].Anal Chem,2011,83(11):4004-4011.
    [7] Lu HJ, Zhao W, Xu JJ, et al. Visual electrochemiluminescence ratiometry on bipolar electrode for bioanalysis[J].Biosens Bioelectron,2018,102:624-630.
    [8] Song FJ,Ai YL,Zhong WY,et al.Detection of copper ions and glutathione based on off-on fluorescent graphene quantum dots[J].J China Pharm Univ(中国药科大学学报),2018,49(1):87-92.
    [9] Cui RJ,Pan HC,Zhu JJ,et al.Versatile immunosensor using CdTe quantum dots as electrochemical and fluorescent labels[J].Anal Chem,2007,79:8494-8501.
    [10] Liu Y,Zhu L,Kong JL,et al.A quantum dots-based electrochemical assay towards the sensitive detection of tumor cells[J].Electrochem Commun,2013,33:59-62.
    [11] Tong P,Zhao WW,Zhang L,et al.Double-probe signal enhancing strategy for toxin aptasensing based on rolling circle amplification[J].Biosens Bioelectron,2012,33(1):146-151.
    [12] Kumar S, Ashish, Kumar S, et al. Effect of Brownian motion on reduced agglomeration of nanostructured metal oxide towards development of efficient cancer biosensor[J].Biosens Bioelectron,2018,102:247-255.
    [13] Li JJ,Yan XX,Li XY,et al.A new electrochemical immunosensor for sensitive detection of prion based on Prussian blue analogue[J].Talanta,2018,179:726-733.
    [14] Pang YH,Zhang Y,Li QY,et al.Synergetic accumulation and simultaneous determination of naphthol isomers on electrochemically reduced graphene oxide modified electrode[J].J Electroanal Chem,2016,769:89-96.
    [15] Ma JC,Zhang WD.Gold nanoparticle-coated multiwall carbon nanotube-modified electrode for electrochemical determination of methyl parathion[J].Microchim Acta,2011,175(3/4):309-314.
    [16] Zhao WW,Dong XY,Wang J,et al.Immunogold labeling-induced synergy effect for amplified photoelectrochemical immunoassay of prostate-specific antigen[J].Chem Commun,2012,48(43):5253-5255.
    [17] Zhang LJ,Xu CL,Li BX.Simple and sensitive detection method for chromium(VI)in water using glutathione-capped CdTe quantum dots as fluorescent probes[J].Microchim Acta,2009,166(1/2):61-68.
    [18] Rabbani MM,Nam DG,Kim DH,et al.Characterization of Au/CdTe nanocomposites prepared by electrostatic interaction[J].T Nonferr Metal Soc,2013,23(2):426-432.
    [19] Tuz Johra F,Jung WG.Low temperature synthesis of RGO-Au nanocomposite with apparently reduced time and its application as a chemical sensor[J].Appl Surf Sci,2016,362:169-175.
    [20] Yu WW,Qu LH,Guo WZ,et al.Experimental determination of the extinction coefficient of CdTe,CdSe,and CdS Nanocrystals[J].Chem Mater,2003,15:2854-2860.
    [21] Liu RP,Wang C,Jiang Q,et al.Magnetic-particle-based,ultrasensitive chemiluminescence enzyme immunoassay for free prostate-specific antigen[J].Anal Chim Acta,2013,801:91-96.
    [22] Xu SJ, Liu Y, Wang TH, et al. Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection[J].Anal Chem,2011,83:3817-3823.
    [23] Gao ZQ,Xu MD,Tang DP,et al.Magnetic bead-based reverse colorimetric immunoassay strategy for sensing biomolecules[J].Anal Chem,2013,85:6945-6954.
    [24] Lakkavarapu S,Pradeep Kumer B,Bondili JS,et al.Development of an electrochemical immunosensor based on gold nanoparticles incorporated chitosan biopolymer nanocomposite film for the detection of prostate cancer using PSA as biomarker[J].Enzyme Microb Tech,2018,112:43-51.
    [25] Xu J,Zhang QM,Xie HY,et al.High sensitive detection method for protein by combining the magnetic separation with cation exchange based signal amplification[J].Talanta,2017,168:91-99.
计量
  • 文章访问数:  1126
  • HTML全文浏览量:  0
  • PDF下载量:  1345
  • 被引次数: 0
出版历程
  • 刊出日期:  2018-08-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭