• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

TAT-FGF21融合蛋白的构建表达纯化及神经保护活性

陈苏婷, 陈松, 高向东

陈苏婷, 陈松, 高向东. TAT-FGF21融合蛋白的构建表达纯化及神经保护活性[J]. 中国药科大学学报, 2018, 49(4): 496-501. DOI: 10.11665/j.issn.1000-5048.20180417
引用本文: 陈苏婷, 陈松, 高向东. TAT-FGF21融合蛋白的构建表达纯化及神经保护活性[J]. 中国药科大学学报, 2018, 49(4): 496-501. DOI: 10.11665/j.issn.1000-5048.20180417
CHEN Suting, CHEN Song, GAO Xiangdong. Construction, expression, purification and neuroprotective activity of TAT-FGF21 fusion protein[J]. Journal of China Pharmaceutical University, 2018, 49(4): 496-501. DOI: 10.11665/j.issn.1000-5048.20180417
Citation: CHEN Suting, CHEN Song, GAO Xiangdong. Construction, expression, purification and neuroprotective activity of TAT-FGF21 fusion protein[J]. Journal of China Pharmaceutical University, 2018, 49(4): 496-501. DOI: 10.11665/j.issn.1000-5048.20180417

TAT-FGF21融合蛋白的构建表达纯化及神经保护活性

基金项目: 国家自然科学基金资助项目(No.81673435,No.81473216)

Construction, expression, purification and neuroprotective activity of TAT-FGF21 fusion protein

  • 摘要: 为了提高成纤维细胞生长因子21(FGF21)的脑内分布而设计TAT-FGF21融合蛋白并探讨其神经保护活性。通过构建pET28a-TAT-FGF21重组质粒,并转化至E.coli BL-21(DE3)感受态细菌,经异丙基硫代半乳糖苷(IPTG)诱导表达后通过镍离子金属鳌合亲和层析介质(Ni-NTA)亲和色谱柱分离纯化获得TAT-FGF21融合蛋白。随后利用Aβ25-35诱导SH-SY5Y细胞损伤模型,并以TAT-FGF21融合蛋白进行干预。MTT法检测TAT-FGF21对Aβ25-35致SH-SY5Y细胞活性下降的干预作用;DCFH-DA荧光探针法检测TAT-FGF21对Aβ25-35致SH-SY5Y细胞内活性氧生成增加的干预作用;JC-1荧光探针法检测TAT-FGF21对Aβ25-35致SH-SY5Y细胞线粒体膜电位异常下降的干预作用。结果显示,TAT-FGF21能够提高SH-SY5Y细胞活性、降低SH-SY5Y细胞内ROS生成水平、提高SH-SY5Y细胞线粒体膜电位,提示TAT-FGF21可以通过缓解氧化损伤发挥神经保护作用。
    Abstract: In order to improve the brain distribution of fibroblast growth factor 21(FGF21), TAT-FGF21 fusion protein was designed and its neuroprotective activity was investigated. The recombinant plasmid of pET28a-TAT-FGF21 was constructed and transformed into E. coli BL-21(DE3)sensitive bacteria. The TAT-FGF21 fusion protein was purified by Ni-NTA affinity chromatography column after IPTG induced expression. The SH-SY5Y cell damage model was induced by Aβ25-35, and the TAT-FGF21 fusion protein was used to intervene. The effects of Aβ25-35 and TAT-FGF21 induced on SH-SY5Y cell viability were determined using MTT method; DCFH-DA fluorescent probe was used to detect the intervention effect TAT-FGF21 on reactive oxygen species(ROS)generation induced by Aβ25-35 in SH-SY5Y cells; the effects of Aβ25-35 and TAT-FGF21 on mitochondrial membrane potential in SH-SY5Y cells were detected with JC-1 fluorescent probe. The results showed that TAT-FGF21 could improve the viability of SH-SY5Y cells, reduce the intracellular ROS production level of SH-SY5Y cells, and enhance the mitochondrial membrane potential of SH-SY5Y cells, which indicate that TAT-FGF21 could protect neurons on SH-SY5Y cell injury induced by Aβ25-35 through alleviating oxidative damage.
  • [1] Kharitonenkov A, Adams AC. Inventing new medicines: the FGF21 story[J].Mol Metab,2014,3(3):221-229.
    [2] Degirolamo C,Sabba C,Moschetta A.Therapeutic potential of the endocrine fibroblast growth factors FGF19,FGF21 and FGF23[J].Nat Rev Drug Discov,2015,15(1):51-69.
    [3] Bookout AL, De Groot MH, Owen BM, et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system[J].Nat Med,2013,19(9):1147-1152.
    [4] Sa-Nguanmoo P,Chattipakorn N,Chattipakorn SC.Potential roles of fibroblast growth factor 21 in the brain[J].Metab Brain Dis,2016,31(2):239-248.
    [5] Hsuchou H,Pan W,Kastin AJ.The fasting polypeptide FGF21 can enter brain from blood[J].Peptides,2007,28(12):2382-2386.
    [6] Kristensen M,Birch D,Nielsen HM.Applications and challenges for use of cell-penetrating peptides as delivery vectors for peptide and protein cargos[J].Int J Mol Sci,2016,17(2):185.
    [7] El-S K,Morishita M,Kamei N,et al.Efficiency of cell-penetrating peptides on the nasal and intestinal absorption of therapeutic peptides and proteins[J].Int J Pharm,2009,381(1):49-55.
    [8] Kamei N,Takeda-Morishita M.Brain delivery of insulin boosted by intranasal coadministration with cell-penetrating peptides[J].J Control Release,2015,197:105-110.
    [9] Rizzuti M,Nizzardo M,Zanetta C,et al.Therapeutic applications of the cell-penetrating HIV-1 Tat peptide[J].Drug Discov Today,2015,20(1):76-85.
    [10] Meloni BP,Milani D,Edwards AB,et al.Neuroprotective peptides fused to arginine-rich cell penetrating peptides:neuroprotective mechanism likely mediated by peptide endocytic properties[J].Pharmacol Ther,2015,153:36-54.
    [11] Herce HD,Garcia AE,Litt J,et al.Arginine-rich peptides destabilize the plasma membrane,consistent with a pore formation translocation mechanism of cell-penetrating peptides[J].Biophys J,2009,97(7):1917-1925.
    [12] Yin W,Cao G,Johnnides MJ,et al.TAT-mediated delivery of Bcl-xL protein is neuroprotective against neonatal hypoxic-ischemic brain injury via inhibition of caspases and AIF[J].Neurobiol Dis,2006,21(2):358-371.
    [13] Namikoshi A,Wu JL,Yamashita T,et al.Vaccination trials with Penaeus japonicus to induce resistance to white spot syndrome virus[J].Aquaculture,2004,229(1/2/3/4):25-35.
    [14] Yu HY,Chen S,Xu Z,et al.Protective effect of fibroin peptides on Aβ25-35-induced injury in SH-SY5Y cells and its mechanism[J].J China Pharm Univ,2017,48(5):609-613.
    [15] Ishii M,Iadecola C.Metabolic and non-cognitive manifestations of Alzheimer′s disease:the hypothalamus as both culprit and target of pathology[J].Cell Metab,2015,22(5):761-776.
    [16] Higuchi M,Maeda J,Ji B,et al.In-vivovisualization of key molecular processes involved in Alzheimer′s disease pathogenesis:Insights from neuroimaging research in humans and rodent models[J].BBA-Mol Basis Dis,2010,1802(4):373-388.
    [17] Anand A,Patience AA,Sharma N,et al.The present and future of pharmacotherapy of Alzheimer′s disease:a comprehensive review[J].Eur J Pharmacol,2017,815:364-375.
    [18] Guo JJ,Liao H.Development of drug for Alzheimer′s disease[J].J China Pharm Univ(中国药科大学学报),2010,41(5):395-400.
    [19] Sanguanmoo P,Tanajak P,Kerdphoo S,et al.FGF21 improves cognition by restored synaptic plasticity,dendritic spine density,brain mitochondrial function and cell apoptosis in obese-insulin resistant male rats[J].Horm Behav,2016,85:86-95.
    [20] Mariani E,Polidori MC,Cherubini A,et al.Oxidative stress in brain aging,neurodegenerative and vascular diseases:an overview[J].J Chromatogr B,2005,827(1):65-75.
    [21] Bhat AH,Dar KB,Anees S,et al.Oxidative stress,mitochondrial dysfunction and neurodegenerative diseases:a mechanistic insight[J].Biomed Pharmacother,2015,74:101-110.
  • 期刊类型引用(3)

    1. 李小娟,魏世斌,尚鹏,王靖睿,冯靖喻,王爱秀,朱衍志. 注射用A型肉毒毒素顶空氧含量与水分关系的探讨. 微生物学免疫学进展. 2023(01): 36-39 . 百度学术
    2. 马秋冉,于晓辉,王雷,杨星,顾进华. 《中国兽药典》与美、英两国药典水分测定法对比分析. 中国兽药杂志. 2023(02): 81-86 . 百度学术
    3. 沈劭怡,李斌,杨德志,杨亚玲. 基于大黄酸碳点荧光探针检测烟叶含水量的研究. 分析测试学报. 2022(07): 1045-1051 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  1257
  • HTML全文浏览量:  0
  • PDF下载量:  1427
  • 被引次数: 5
出版历程
  • 刊出日期:  2018-08-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭