• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

免疫检查点PD-1/PD-L1小分子抑制剂的研究进展

田季平, 张剑, 周金培, 张惠斌

田季平, 张剑, 周金培, 张惠斌. 免疫检查点PD-1/PD-L1小分子抑制剂的研究进展[J]. 中国药科大学学报, 2019, 50(1): 1-10. DOI: 10.11665/j.issn.1000-5048.20190101
引用本文: 田季平, 张剑, 周金培, 张惠斌. 免疫检查点PD-1/PD-L1小分子抑制剂的研究进展[J]. 中国药科大学学报, 2019, 50(1): 1-10. DOI: 10.11665/j.issn.1000-5048.20190101
TIAN Jiping, ZHANG Jian, ZHOU Jinpei, ZHANG Huibin. Advances in small molecule inhibitors of PD-1/PD-L1 immune checkpoint pathway[J]. Journal of China Pharmaceutical University, 2019, 50(1): 1-10. DOI: 10.11665/j.issn.1000-5048.20190101
Citation: TIAN Jiping, ZHANG Jian, ZHOU Jinpei, ZHANG Huibin. Advances in small molecule inhibitors of PD-1/PD-L1 immune checkpoint pathway[J]. Journal of China Pharmaceutical University, 2019, 50(1): 1-10. DOI: 10.11665/j.issn.1000-5048.20190101

免疫检查点PD-1/PD-L1小分子抑制剂的研究进展

Advances in small molecule inhibitors of PD-1/PD-L1 immune checkpoint pathway

  • 摘要: 研究发现多种肿瘤通过上调自身和肿瘤微环境的PD-L1表达,持续激活PD-1(programmed cell death protein 1,PD-1)/PD-L1(programmed cell death-ligand 1)信号通路,抑制T细胞的功能,导致肿瘤免疫逃逸的发生。目前已有多种PD-1/PD-L1单抗药物上市,并且获得了较为满意的临床效果。但因为单抗生产成本高昂,存储运输条件苛刻,有免疫原性等问题,寻找免疫检查点PD-1/PD-L1小分子抑制剂成为了当前新药开发的热点。本文详细介绍了PD-1/PD-L1的生物学机制,按结构分类综述了PD-1/PD-L1小分子抑制剂的研究进展,并对小分子抑制剂的研发进行了展望。
    Abstract: Studies have found that a variety of tumors continue to activate PD-1(programmed cell death protein 1, PD-1)/PD-L1(programmed cell death-ligand 1)signaling pathway by up-regulating PD-L1 expression in tumor cells and microenvironment. The dysfunction of T cells leads to the occurrence of tumor immune escape. Several PD-1/PD-L1 monoclonal antibodies have been marketed to achieve significant clinical efficacy. However, because of the high production cost, the harsh conditions for storage and transportation, and the potential immunogenicity of monoclonal antibody, the seeking for PD-1/PD-L1 small molecule inhibitors has become a hot spot in the development of new drugs. In this paper, the biological mechanisms of PD-1/PD-L1 was introduced in detail. Based on the structural classification, the research progress of PD-1/PD-L1 small molecule inhibitors was reviewed, with a prospect of the development of small molecule inhibitors.
  • [1] Sharma P,Allison JP.The future of immune checkpoint therapy[J].Science,2015,348(6230):56-61.
    [2] Hwang SJ, Carlos G, Chou S, et al. Bullous pemphigoid, an autoantibody-mediated disease,is a novel immune-related adverse event in patients treated with anti-programmed cell death 1 antibodies[J].Melanoma Res,2016,26(4):413-416.
    [3] Naidoo J,Page DB,Li BT,et al.Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies[J].Ann Oncol,2015,26(12):2375-2391.
    [4] Ishida Y,Agata Y,Shibahara K,et al.Induced expression of PD-1,a novel member of the immunoglobulin gene superfamily,upon programmed cell death[J].Embo Journal,1992,11(11):3887-3895.
    [5] Pan JJ,Jia XQ,Huang G,et al.PD-1/PD-Ls signaling pathway and the application of anti-PD-1/PD-Ls antibodies in cancer therapy[J].J China Pharm Univ(中国药科大学学报),2016,47(1):9-18.
    [6] Longo DL,Boussiotis VA.Molecular and biochemical aspects of the PD-1 checkpoint pathway[J].New Engl J Med,2016,375(18):1767-1778.
    [7] Okazaki T,Honjo T.PD-1 and PD-1 ligands:from discovery to clinical application[J].Int Immunol,2007,19(7):813-824.
    [8] Chen L.Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity[J].Nat Rev Immunol,2004,4(5):336-347.
    [9] Intlekofer AM,Thompson CB.At the bench:preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy[J].J Leukoc Biol,2013,94(1):25-39.
    [10] Chemnitz JM, Parry RV, Nichols KE, et al. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation,but only receptor ligation prevents T cell activation[J].J Immunol,2004,173(2):945-954.
    [11] Sharpe AH,Pauken KE.The diverse functions of the PD1 inhibitory pathway[J].Nat Rev Immunol,2017,18(3):153-167.
    [12] Hui E,Cheung J,Zhu J,et al.T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition[J].Science,2017,355(6332):1428-1433.
    [13] Patsoukis N,Brown J,Petkova V,et al.Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation[J].Sci Signal,2012,5(230):ra46.
    [14] Dong H,Strome SE,Salomao DR,et al.Tumor-associated B7-H1 promotes T-cell apoptosis:a potential mechanism of immune evasion[J].Nat Med,2002,8(8):793-800.
    [15] Fumihiko T,Sheng Y,Tahiro S,et al.Interaction between B7-H1 and PD-1 determines initiation and reversal of T-cell anergy[J].Blood,2007,110(1):180-185.
    [16] Wherry EJ,Kurachi M.Molecular and cellular insights into T cell exhaustion[J].Nat Rev Immunol,2015,15(8):486-499.
    [17] Monica VG,Charles HM,Edward LH,et al.Role of PD-1 and its ligand,B7-H1,in early fate decisions of CD8 T cells[J].Blood,2007,110(1):186-192.
    [18] Francisco LM,Sage PT,Sharpe AH.The PD-1 pathway in tolerance and autoimmunity[J].Immunol Rev,2010,236(1):219-242.
    [19] Liu J,Zhang S,Hu Y,et al.Targeting PD-1 and Tim-3 pathways to reverse CD8 T-cell exhaustion and enhance ex vivo T-cell responses to autologous dendritic/tumor vaccines[J].J Immunother,2016,39(4):171-181.
    [20] Sasikumar PGN,Vadlamani SK,Vemula KR.Immunosuppression modulating compounds:US,0318373[P].2011-12-29.
    [21] Sasikumar P,Shrimali R,Adurthi S,et al.A novel peptide therapeutic targeting PD1 immune checkpoint with equipotent antagonism of both ligands and a potential for better management of immune-related adverse events[J].J Immunother Cancer,2013,1(S1):O24.
    [22] Sasikumar PGN,Ramachandra M,Vadlamani SK,et al,Immunosuppression modulating compounds:WO,2011161699A2[P].2011-12-29.
    [23] Sasikumar PG,Satyam LK,Shrimali RK,et al.Abstract 2850:Demonstration of anti-tumor efficacy in multiple preclinical cancer models using a novel peptide inhibitor(Aurigene-012)of the PD1 signaling pathway[J].Cancer Res,2012,72(8 Supplement):2850-2850.
    [24] Sasikumar PGN.Immunomodulating cyclic compounds:US,9422339[P].2016-08-23.
    [25] Sasikumar PGN.Therapeutic immunomodulating compounds:WO,2015044900[P].2015-04-02.
    [26] Sasikumar PGN.Cyclic Peptidomimetic compounds as immunomodulators:WO,2015033303[P].2015-03-12.
    [27] Sasikumar PGN.Therapeutic cyclic compounds as immunomodulators:WO,2016142835[P].2016-09-15.
    [28] Miller Michael Matthew.Macrocyclic inhibitors of the PD-1/PD-l1 and cd80(b7-1)/pd-l1 protein/protein interactions:US,20170260237[P].2017-09-14.
    [29] Gillman,K.W.Macrocyclic peptides useful as immunomodulators:WO,2016077518[P].2016-05-19.
    [30] Boy KM,Sun LQ.Immunomodulators:WO,2016149351[P].2016-09-22.
    [31] Sun LQ,Zhao Q.Immunomodulators:WO,2016057624[P].2016-04-14.
    [32] Sun LQ,Zhao Q.Immunomodulators:WO,2016126646[P].2016-08-11.
    [33] Chang HN,Liu BY,Qi YK,et al.Blocking of the PD-1/PD-L1 interaction by a D-peptide antagonist for cancer immunotherapy[J].Angew Chem Int Edit,2015,127(40):11926-11930.
    [34] Li C, Zhang N, Zhou J, et al. Peptide blocking of PD-1/PD-L1 interaction for cancer immunotherapy[J].Cancer Immunol Res,2017,6(2):178-188.
    [35] Sharpe AH,Butte MJ,Oyama S.Modulators of immunoinhibitory receptor PD-1,and methods of use thereof:WO,2011082400[P].2011-07-07.
    [36] Chupak LS,Zheng X.Compounds useful as immunomodulators:WO,2015034820A1[P].2015-03-12.
    [37] Chupak LS,Ding M,Martin SW.Preparation of substituted 2,4-dihydroxybenzylamines as immunomodulators:WO,2015160641A2[P].2015-10-22.
    [38] Yeung KS,Connolly TP.Compounds useful as immunomodulators:WO,2017066227[P].2017-04-20.
    [39] Yeung KS,Katharine AGY,Zhu JL,et al.Compounds useful as immunomodulators:WO,2018044963A1[P].2018-03-08.
    [40] Guzik K,Zak KM,Grudnik P,et al.Small-molecule inhibitors of the programmed cell death-1/programmed death-ligand 1(PD-1/PD-L1)interaction via transiently induced protein states and dimerization of PD-L1[J].J Med Chem,2017,60(13):5857-5867.
    [41] Zak KM,Grudnik P,Guzik K,et al.Structural basis for small molecule targeting of the programmed death ligand 1(PD-L1)[J].Oncotarget,2016,7(21):30323-30335.
    [42] Skalniak L,Zak KM,Guzik K,et al.Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells[J].Oncotarget,2017,8(42):72167-72181.
    [43] Wang L,Wang H,Chen H,et al.Serum levels of soluble programmed death ligand 1 predict treatment response and progression free survival in multiple myeloma[J].Oncotarget,2015,6(38):41228-41236.
    [44] Damotte D.High level of soluble programmed cell death ligand 1 in blood impacts overall survival in aggressive diffuse large B-Cell lymphoma:results from a French multicenter clinical trial[J].Leukemia,2014,28(12):2367-2375.
    [45] Xavier F,Inman BA,Lohse CM,et al.Identification of a soluble form of B7-H1 that retains immunosuppressive activity and is associated with aggressive renal cell carcinoma[J].Clin Cancer Res,2011,17(7):1915-1923.
    [46] Davies LC,Heldring N,Kadri N,et al.Mesenchymal stromal cell secretion of programmed death‐1 ligands regulates t cell mediated immunosuppression[J].Stem Cells,2017,35(3):766-776.
    [47] Nagato T,Ohkuri T,Ohara K,et al.Programmed death-ligand 1 and its soluble form are highly expressed in nasal natural killer/T-cell lymphoma:a potential rationale for immunotherapy[J].Cancer Immunol Immun,2017,66(7):1-14.
    [48] Saiya-Cork K,Collins R,Parkin B,et al.A pathobiological role of the insulin receptor in chronic lymphocytic leukemia[J].Clin Cancer Res,2011,17(9):2679-2692.
    [49] Frigola X,Inman BA,Krco CJ,et al.Soluble B7-H1:differences in production between dendritic cells and T cells[J].Immunol Lett,2012,142(1/2):78-82.
    [50] Feng Z,Chen X,Yang Y.Benzyl phenyl ether derivative preparation method therefor,and pharmaceutical composition and uses thereof:WO,2017202273[P].2017-11-30.
    [51] Feng Z,Chen X,Yang Y.Bromo benzyl ether derivative preparation method therefor,and pharmaceutical composition and uses thereof:WO,2017202275[P].2017-11-30.
    [52] Feng Z,Chen X,Yang Y.Phenylate derivative preparation method therefor,and pharmaceutical composition and uses thereof:WO,2017202276[P].2017-11-30.
    [53] Wang Y,Xu Y,Zhang T,Aromatic acetylene or aromatic ethylene compound,intermediate,preparation method,pharmaceutical composition and use thereof:WO,2018006795[P].2017-11-30.
    [54] Lajkiewicz N,Wu LX.Heterocyclic Compounds as immunomodulators:WO,2017112730[P].2017-06-29.
    [55] Wu LX,Li JW.Benzooxazole Derivatives as immunomodulators:WO,2018119266[P].2018-06-28.
    [56] Aktoudlanakls E,Appleby T,Aesop C,et al.PD-1/PD-L1 Inhibitors:WO,2018195321A1[P].2018-10-25.
    [57] Sasikumar PGN, Ramachandra M. VISTA Signaling pathway inhibitory compounds useful as immunomodulators:WO,2018047143A1[P].2018-03-15.
    [58] Carreterogonzález A, Lora D, Ghanem I, et al. Analysis of response rate with ANTI PD1/PD-L1 monoclonal antibodies in advanced solid tumors:a meta-analysis of randomized clinical trials[J].Oncotarget,2018,9(9):8706-8715.
    [59] Guangzhou Dankang Pharmaceutical Biological Co.Ltd.Cyclic compound for inhibiting programmed death receptor ligand 1 and use thereof:CN,108395443.[P].2018-08-04.
    [60] Nanjing Sanhome Pharmaceutical Co.Ltd.Heterocyclic compound serving as PD-L1 Inhibitor;WO,2018196768[P].2018-11-01.
  • 期刊类型引用(19)

    1. 夏黎明,岳锋,祝仰钊,张秋雨,王选年. 阻断程序性死亡受体-1通路拮抗剂研究进展. 动物医学进展. 2025(03): 103-107 . 百度学术
    2. 靳书滨,刘晓燕,耿文华,焦建军. cHNSCC患者PD-L1、MMP1表达分析及与术后复发的关系. 国际检验医学杂志. 2023(04): 461-464+471 . 百度学术
    3. 胡慧玲,李惠武,朱世茂,杨银银,海妮萨依姆·图尔荪,王永晨,李卉. 食管癌细胞中脂多糖对肿瘤坏死因子α诱导程序性细胞死亡配体1表达的影响. 安徽医药. 2023(08): 1568-1572 . 百度学术
    4. 王阮妍,蔡彤州,陈建平,何金蕾. 寄生虫慢性感染过程中的T细胞耗竭研究进展. 热带医学杂志. 2022(02): 291-295 . 百度学术
    5. 黄玲,田赛宁,杨梦婷,李世臻,许沁瑶,杨琼. T细胞/PD-1/PD-L1通路在动脉粥样硬化免疫调控中的作用. 医学综述. 2022(12): 2338-2344 . 百度学术
    6. 张玉,杨梦蝶,余飞. 靶向PD-1/PD-L1放射性核素分子探针及其在恶性肿瘤中的应用. 国际放射医学核医学杂志. 2022(06): 374-379 . 百度学术
    7. 陈宁,李桂香. 脂代谢与PD-1/PD-L1抑制剂疗效的研究进展. 兰州大学学报(医学版). 2022(07): 87-90 . 百度学术
    8. 王迪,王润杨,杨俊寒,张乐,胡翰,汪洋,刘滨磊. 表达人源PD-L1的4T1细胞系的构建. 湖北工业大学学报. 2022(05): 76-78 . 百度学术
    9. 韩璐,厉锋. 卡瑞利珠单抗联合化疗治疗晚期NSCLC患者的治疗效果. 分子诊断与治疗杂志. 2022(10): 1692-1695+1700 . 百度学术
    10. 倪晶,王真. 阿帕替尼联合用药治疗晚期胃癌的研究进展. 海南医学. 2021(04): 507-510 . 百度学术
    11. 许嘉,许健. PD-1/PD-L1抑制剂在肿瘤免疫治疗中的临床应用进展. 现代医学与健康研究电子杂志. 2021(05): 28-30 . 百度学术
    12. 田岳凤,方慧,孙妮娜,熊罗节,翟春涛,李玮. 不同灸法干预对免疫抑制兔肝脏组织形态学及PD-1表达的影响(英文). World Journal of Acupuncture-Moxibustion. 2021(04): 296-301 . 百度学术
    13. 田岳凤,李雷勇,毛凯荣,熊罗节,孙妮娜,翟春涛. 不同灸法对免疫抑制兔外周血PD-1、PD-L1及免疫细胞分子CD19、CD45R、CD69、NKG2D的影响. 中华中医药学刊. 2021(12): 10-12 . 百度学术
    14. 陈彦臻,吴坚,刘沈林. 肿瘤患者髓源抑制性细胞的免疫抑制及临床应用分析. 中国免疫学杂志. 2020(15): 1902-1908 . 百度学术
    15. 唐恩璐,贺颖,方明红,巩小凡,丁旭,李正祎,张宸豪. PD-L1分子的研究进展. 吉林医药学院学报. 2020(04): 289-292 . 百度学术
    16. 张婷,卢岩,陈娟,欧阳昭连. PD-1/PD-L1抑制剂领域技术创新态势及其科学基础研究. 中国药事. 2020(10): 1171-1179 . 百度学术
    17. 邢杰,赵继开,丁闻洁,韩昱晨. 免疫组化双重染色技术在胸腺肿瘤PD-L1检测中的应用. 临床与实验病理学杂志. 2020(12): 1482-1484 . 百度学术
    18. 万南燕,蒋翠花,高萌,张健,殷志琦,潘珂. 芍药苷调控JAK/STAT3通路干预HepG2细胞PD-L1表达的研究. 中国药科大学学报. 2019(02): 213-221 . 本站查看
    19. 黎素焕,林幼玉,王清水. 肿瘤中细胞程序性死亡配体1糖基化及泛素化的调控. 生物技术通讯. 2019(05): 683-687 . 百度学术

    其他类型引用(25)

计量
  • 文章访问数:  3056
  • HTML全文浏览量:  16
  • PDF下载量:  4277
  • 被引次数: 44
出版历程
  • 刊出日期:  2019-02-24

目录

    /

    返回文章
    返回