• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

抗肿瘤血管生成治疗的纳米递送策略

杨杉, 徐程, 姚静

杨杉, 徐程, 姚静. 抗肿瘤血管生成治疗的纳米递送策略[J]. 中国药科大学学报, 2019, 50(1): 11-18. DOI: 10.11665/j.issn.1000-5048.20190102
引用本文: 杨杉, 徐程, 姚静. 抗肿瘤血管生成治疗的纳米递送策略[J]. 中国药科大学学报, 2019, 50(1): 11-18. DOI: 10.11665/j.issn.1000-5048.20190102
YANG Shan, XU Cheng, YAO Jing. Strategies of nano drug delivery system applied in anti-angiogenic therapy[J]. Journal of China Pharmaceutical University, 2019, 50(1): 11-18. DOI: 10.11665/j.issn.1000-5048.20190102
Citation: YANG Shan, XU Cheng, YAO Jing. Strategies of nano drug delivery system applied in anti-angiogenic therapy[J]. Journal of China Pharmaceutical University, 2019, 50(1): 11-18. DOI: 10.11665/j.issn.1000-5048.20190102

抗肿瘤血管生成治疗的纳米递送策略

基金项目: 国家自然科学基金资助项目(No.81773655);江苏省“六大人才高峰”资助项目(No.YY-001)和江苏省“333工程”培养基金资助项目(No.BRA2017432)

Strategies of nano drug delivery system applied in anti-angiogenic therapy

  • 摘要: 抗肿瘤血管生成治疗应用范围广泛,恰如其分地运用纳米递药系统能够在发挥抗血管生成作用的同时达到增效减毒的效果。本文综述了纳米递药系统在抗肿瘤血管生成治疗中的应用,介绍了各类纳米粒子提高抗血管生成治疗疗效的策略与设计思路,以期为抗肿瘤血管生成治疗的深入研究提供理论参考。
    Abstract: Anti-angiogenic therapy has a wide range of applications in the treatment of tumor. Nano drug delivery system can contribute to higher efficacy and lower toxicity in anti-angiogenic therapy. This article reviews the application of nano drug delivery system in anti-angiogenic therapy and introduces the strategies to improve its treatment efficiency with varieties of nanoparticles, providing reference for the development of anti-angiogenic therapy.
  • [1] Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia[J].Cancer Cell,2014,26(5):605-622.
    [2] Shi J,Kantoff PW,Wooster R,et al.Cancer nanomedicine:progress,challenges and opportunities[J].Nat Rev Cancer,2016,17(1):20-37.
    [3] Folkman J.Tumor angiogenesis:therapeutic implications[J].New Engl J Med,1971,285(21):1182-1186.
    [4] Jain RK.Normalizing tumor microenvironment to treat cancer:bench to bedside to biomarkers[J].J Clin Oncol,2013,31(17):2205-2218.
    [5] Leung DW,Cachianes G,Kuang WJ,et al.Vascular endothelial growth factor is a secreted angiogenic mitogen[J].Science,1989,246(4935):1306-1309.
    [6] Liang X,Xu F,Li X,et al.VEGF signal system:the application of antiangiogenesis[J].Curr Med Chem,2014,21(7):894-910.
    [7] Yang S,Gao H.Nanoparticles for modulating tumor microenvironment to improve drug delivery and tumor therapy[J].Pharmacol Res,2017,126:97-108.
    [8] Lee H,Lee HJ,Bae IJ,et al.Inhibition of STAT3/VEGF/CDK2 axis signaling is critically involved in the antiangiogenic and apoptotic effects of arsenic herbal mixture PROS in non-small lung cancer cells[J].Oncotarget,2017,8(60):101771-101783.
    [9] Ferrara N,Adamis AP.Ten years of anti-vascular endothelial growth factor therapy[J].Nat Rev Drug Discov,2016,15(6):385-403.
    [10] Jayson GC,Kerbel R,Ellis LM,et al.Antiangiogenic therapy in oncology:current status and future directions[J].Lancet,2016,388(10043):518-529.
    [11] Raut CP, Nawrocki S, Lashinger LM, et al. Celecoxib inhibits angiogenesis by inducing endothelial cell apoptosis in human pancreatic tumor xenografts[J].Cancer Biol Ther,2004,3(12):1217-1224.
    [12] Wang X, Shen Y, Li S, et al. Importance of the interaction between immune cells and tumor vasculature mediated by thalidomide in cancer treatment[J].Int J Mol Med,2016,38(4):1021-1029.
    [13] Norrby K.Low-molecular-weight heparins and angiogenesis[J].Apmis,2010,114(2):79-102.
    [14] Xu Y,Wen Z,Xu Z.Chitosan nanoparticles inhibit the growth of human hepatocellular carcinoma xenografts through an antiangiogenic mechanism[J].Anticancer Res,2009,29(12):5103-5109.
    [15] Lim DK,Wylie RG,Langer R,et al.Selective binding of C-6 OH sulfated hyaluronic acid to the angiogenic isoform of VEGF(165)[J].Biomaterials,2016,77:130-138.
    [16] Kim GH,Won JE,Byeon Y,et al.Selective delivery of PLXDC1 small interfering RNA to endothelial cells for anti-angiogenesis tumor therapy using CD44-targeted chitosan nanoparticles for epithelial ovarian cancer[J].Gynecol Endocrinol,2018,25(1):1-5.
    [17] Li Y, Wu Y, Huang L, et al. Sigma receptor-mediated targeted delivery of anti-angiogenic multifunctional nanodrugs for combination tumor therapy[J].J Control Release,2016,228:107-119.
    [18] Xiong H,Wu YY,Jiang ZJ,et al.pH-activatable polymeric nanodrugs enhanced tumor chemo/antiangiogenic combination therapy through improving targeting drug release[J].J Colloid Interf Sci,2019,536:135-148.
    [19] Tian F,Dahmani FZ,Qiao JN,et al.A targeted nanoplatform co-delivering chemotherapeutic and antiangiogenic drugs as a tool to reverse multidrug resistance in breast cancer[J].Acta Biomater,2018,75:398-412.
    [20] Sun F,Yu Y,Yang Z,et al.Hyaluronic acid-endostatin2-alft1(HA-ES2-AF)nanoparticle-like conjugate for the target treatment of diseases[J].J Control Release,2018,288:1-13.
    [21] Ding Y,Ji T,Zhao Y,et al.Improvement of stability and efficacy of C16Y therapeutic peptide via molecular self-assembly into tumor-responsive nanoformulation[J].Mol Cancer Ther,2015,14(10):2390-2400.
    [22] Mukherjee P,Bhattacharya R,Wang P,et al.Antiangiogenic properties of gold nanoparticles[J].Clin Cancer Res,2005,11(9):3530-3534.
    [23] Gurunathan S,Lee KJ,Kalishwaralal K,et al.Antiangiogenic properties of silver nanoparticles[J].Biomaterials,2009,30(31):6341-6350.
    [24] Li X,Wu M,Pan L,et al.Tumor vascular-targeted co-delivery of anti-angiogenesis and chemotherapeutic agents by mesoporous silica nanoparticle-based drug delivery system for synergetic therapy of tumor[J].Int J Nanomed,2016,11(1):93-105.
    [25] Fu X,Yang Y,Li X,et al.RGD peptide-conjugated selenium nanoparticles:antiangiogenesis by suppressing VEGF-VEGFR2-ERK/AKT pathway[J].Nanomedicine,2016,12(6):1627-1639.
    [26] Lai PX,Chen CW,Wei SC,et al.Ultrastrong trapping of VEGF by graphene oxide:anti-angiogenesis application[J].Biomaterials,2016,109:12-22.
    [27] Balakrishnan S,Bhat FA,Raja SP,et al.Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition,angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer[J].Cell Prolif,2016,49(6):678-697.
    [28] Jiao M,Zhang P,Meng J,et al.Recent advancements in biocompatible inorganic nanoparticles towards biomedical applications[J].Biomater Sci, 2018,6(4):726-745.
    [29] Burrows FJ,Thorpe PE.Eradication of large solid tumors in mice with an immunotoxin directed against tumor vasculature[J].Proc Natl Acad Sci U S A,1993,90(19):8996-9000.
    [30] Kunjachan S,Detappe A,Kumar R,et al.Nanoparticle mediated tumor vascular disruption:a novel strategy in radiation therapy[J].Nano Lett,2015,15(11):7488-7496.
    [31] Gao W,Li S,Liu Z,et al.Targeting and destroying tumor vasculature with a near-infrared laser-activated "nanobomb" for efficient tumor ablation[J].Biomaterials,2017,139:1-11.
    [32] Zhang C,Ni D,Liu Y,et al.Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy[J].Nat Nanotechnol,2017,12(4):378-386.
    [33] Malamas AS,Jin E,Gujrati M,et al.DCE-MRI assessing the anti-angiogenic effect of silencing HIF-1α with targeted multifunctional ECO/siRNA nanoparticles[J].Mol Pharm,2016,13(7):2497-2506.
    [34] Miao L,Liu Q,Lin CM,et al.Targeting tumor-associated fibroblasts for therapeutic delivery in desmoplastic tumors[J].Cancer Res,2017,77(3):719-731.
    [35] Ruan S,He Q,Gao H.Matrix metalloproteinase triggered size-shrinkable gelatin-gold fabricated nanoparticles for tumor microenvironment sensitive penetration and diagnosis of glioma[J].Nanoscale,2015,7(21):9487-9496.
    [36] Huo M,Zhao Y,Satterlee AB,et al.Tumor-targeted delivery of sunitinib base enhances vaccine therapy for advanced melanoma by remodeling the tumor microenvironment[J].J Control Release,2017,245:81-94.
    [37] Yan L,Gao Y,Pierce R,et al.Development of Y-shaped peptide for constructing nanoparticle systems targeting tumor-associated macrophages in vitro and in vivo[J].Mater Res Express,2014,1(2):025007.
    [38] Finlay J,Roberts CM,Dong J,et al.Mesoporous silica nanoparticle delivery of chemically modified siRNA against TWIST1 leads to reduced tumor burden[J].Nanomedicine,2015,11(7):1657-1666.
    [39] Wang B,Ding Y,Zhao X,et al.Delivery of small interfering RNA against Nogo-B receptor via tumor-acidity responsive nanoparticles for tumor vessel normalization and metastasis suppression[J].Biomaterials,2018,175:110-122.
    [40] Kwak G,Jo SD,Kim D,et al.Synergistic antitumor effects of combination treatment with metronomic doxorubicin and VEGF-targeting RNAi nanoparticles[J].J Control Release,2017,267:203-213.
    [41] Wong PP,Bodrug N,Hodivala-Dilke KM.Exploring novel methods for modulating tumor blood vessels in cancer treatment[J].Curr Biol,2016,26(21):R1161-R1166.
    [42] Ebos JM,Lee CR,Kerbel RS.Tumor and host-mediated pathways of resistance and disease progression in response to antiangiogenic therapy[J].Clin Cancer Res,2009,15(16):5020-5025.
计量
  • 文章访问数:  1342
  • HTML全文浏览量:  0
  • PDF下载量:  1498
  • 被引次数: 0
出版历程
  • 刊出日期:  2019-02-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭