[1] |
Mfouo Tynga I,Abrahamse H.Nano-mediated photodynamic therapy for cancer:enhancement of cancer specificity and therapeutic effects[J].Nanomaterials(Basel),2018,8(11).doi: 10.3390/nano8110923.
|
[2] |
Lim CK, Heo J, Shin S, et al. Nanophotosensitizers toward advanced photodynamic therapy of Cancer[J].Cancer Lett,2013,334(2):176-187.
|
[3] |
Duse L,Pinnapireddy SR,Strehlow B,et al.Low level LED photodynamic therapy using curcumin loaded tetraether liposomes[J].Eur J Pharm Biopharm,2018,126:233-241.
|
[4] |
Wang Y,Xie Y,Li J,et al.Tumor-Penetrating nanoparticles for enhanced anticancer activity of combined photodynamic and hypoxia-activated therapy[J].ACS Nano,2017,11(2):2227-2238.
|
[5] |
Wang Y,Zheng K,Xuan G,et al.Novel pH-sensitive zinc phthalocyanine assembled with albumin for tumor targeting and treatment[J].Int J Nanomed,2018,13:7681-7695.
|
[6] |
Park W,Park SJ,Cho S,et al.Intermolecular structural change for thermoswitchable polymeric photosensitizer[J].J Am Chem Soc,2016,138(34):10734-10737.
|
[7] |
Dai L,Yu Y,Luo Z,et al.Photosensitizer enhanced disassembly of amphiphilic micelle for ROS-response targeted tumor therapy in vivo[J].Biomaterials,2016,104:1-17.
|
[8] |
Gao M,Fan F,Li D,et al.Tumor acidity-activatable TAT targeted nanomedicine for enlarged fluorescence/magnetic resonance imaging-guided photodynamic therapy[J].Biomaterials,2017,133:165-175.
|
[9] |
Yuan A,Yang B,Wu J,et al.Dendritic nanoconjugates of photosensitizer for targeted photodynamic therapy[J].Acta Biomater,2015,21:63-73.
|
[10] |
Perry JL, Reuter KG, Luft JC, et al. Mediating passive tumor accumulation through particle size,tumor type,and location[J].Nano Lett,2017,17(5):2879-2886.
|
[11] |
Liu Y,Zhou JP,Wang W.Advances in PEGylated targeted nano-preparation[J].J China Pharm Univ(中国药科大学学报),2017,48(3):268-275.
|
[12] |
Wang J,Zhang F,Tsang WP,et al.Fabrication of injectable high strength hydrogel based on 4-arm star PEG for cartilage tissue engineering[J].Biomaterials,2017,120:11-21.
|
[13] |
Gok O,Erturk P,Sumer Bolu B,et al.Dendrons and multiarm polymers with thiol-exchangeable cores:a reversible conjugation platform for delivery[J].Biomacromolecules,2017,18(8):2463-2477.
|
[14] |
Zhao Y,Li F,Mao C,et al.Multiarm nanoconjugates for cancer cell-targeted delivery of photosensitizers[J].Mol Pharm,2018,15(7):2559-2569.
|
[15] |
Hagemann J,Jacobi C,Hahn M,et al.Spheroid-based 3D cell cultures enable personalized therapy testing and drug discovery in head and neck cancer[J].Anticancer Res,2017,37(5):2201-2210.
|
[16] |
Ming X,Carver K,Wu L.Albumin-based nanoconjugates for targeted delivery of therapeutic oligonucleotides[J].Biomaterials,2013,34(32):7939-7949.
|
[17] |
Huang BW,Gao JQ.Application of 3D cultured multicellular spheroid tumor models in tumor-targeted drug delivery system research[J].J Control Release,2018,270:246-259.
|
[18] |
Sant S,Johnston PA.The production of 3D tumor spheroids for cancer drug discovery[J].Drug Discovery Today:Technol,2017,23:27-36.
|
[19] |
Ramaiahgari SC,Waidyanatha S,Dixon D,et al.From the cover:three-dimensional(3D)HepaRG spheroid model with physiologically relevant xenobiotic metabolism competence and hepatocyte functionality for liver toxicity screening[J].Toxicol Sci,2017,159(1):124-136.
|
[20] |
Lu C,Zahedi P,Forman A,et al.Multi-arm PEG/silica hydrogel for sustained ocular drug delivery[J].J Pharm Sci,2014,103(1):216-226.
|
[21] |
Lv L,Shen Y,Li M,et al.Novel 4-arm poly(ethylene glycol)-block-poly(anhydride-esters)amphiphilic copolymer micelles loading curcumin:preparation,characterization,and in vitro evaluation[J].Biomed Res Int,2013,2013:507103.
|
[22] |
Ma G,Zhang C,Zhang L,et al.Doxorubicin-loaded micelles based on multiarm star-shaped PLGA-PEG block copolymers:influence of arm numbers on drug delivery[J].J Mater Sci Mater Med,2016,27(1):17.
|
[23] |
Montet X,Funovics M,Montet-Abou K,et al.Multivalent effects of RGD peptides obtained by nanoparticle display[J].J Med Chem,2006,49(20):6087-6093.
|