• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

高分子前药的研究进展

韩天娇, 胡玉玺, 付宏征

韩天娇, 胡玉玺, 付宏征. 高分子前药的研究进展[J]. 中国药科大学学报, 2019, 50(4): 397-404. DOI: 10.11665/j.issn.1000-5048.20190403
引用本文: 韩天娇, 胡玉玺, 付宏征. 高分子前药的研究进展[J]. 中国药科大学学报, 2019, 50(4): 397-404. DOI: 10.11665/j.issn.1000-5048.20190403
HAN Tianjiao, HU Yuxi, FU Hongzheng. Research progress and consideration of polymeric prodrugs[J]. Journal of China Pharmaceutical University, 2019, 50(4): 397-404. DOI: 10.11665/j.issn.1000-5048.20190403
Citation: HAN Tianjiao, HU Yuxi, FU Hongzheng. Research progress and consideration of polymeric prodrugs[J]. Journal of China Pharmaceutical University, 2019, 50(4): 397-404. DOI: 10.11665/j.issn.1000-5048.20190403

高分子前药的研究进展

Research progress and consideration of polymeric prodrugs

  • 摘要: 修饰已上市药物以改善药物存在的缺陷,是目前全球药物研发的一个重要方向。以高分子前药为基础的给药系统具有前药修饰和微纳米载药的双重优势,可以增强药物在体内、体外的稳定性,增加药物的靶向性,提高药物的生物利用度、降低药物不良反应和提高治疗效果。本文根据高分子前药的研发机制,从被动靶向、主动靶向、触发释药和协同给药进行综述,探讨该类药物的研发现状及所面临的问题,并对此给出适当可行的解决方案。
    Abstract: Currently the available therapies cannot satisfy all the clinical requirements, therefore advanced technologies are urgently demanded. Delivery system the polymeric prodrug based has both advantages of prodrug strategy and nanoparticle drug delivery strategy. The system can improve the drug bioavailability, enhance the drug stability, and make the drug targeting system more effective. The system can reduce the side effects and improve the therapeutic effect of drug. According to the mechanism of this drug system, passive targeting, active targeting, triggered release and co-administration were reviewed. Finally, the research prospects and issues in this field were pointed out.
  • [1] Bildstein L,Dubernet C,Couvreur P.Prodrug-based intracellular delivery of anticancer agents[J].Adv Drug Deliv Rev,2011,63(1/2):3-23.
    [2] Minko T,Rodriguez-Rodriguez L,Pozharov V.Nanotechnology approaches for personalized treatment of multidrug resistant cancers[J].Adv Drug Deliv Rev,2013,65(13/14):1880-1895.
    [3] Bertrand N, Wu J, Xu XY, et al. Cancer nanotechnology:the impact of passive and active targeting in the era of modern cancer biology[J].Adv Drug Deliv Rev,2014,66:2-25.
    [4] Aslan B,Ozpolat B,Sood AK,et al.Nanotechnology in cancer therapy[J].J Drug Target,2013,21(10):904-913.
    [5] Huttunen KM,Raunio H,Rautio J.Prodrugs:from serendipity to rational design[J].Pharmacol Rev,2011,63(3):750-771.
    [6] Mi Y,Zhao J,Feng SS.Prodrug micelle-based nanomedicine for cancer treatment[J].Nanomedicine(Lond),2013,8(10):1559-1562.
    [7] Delplace V,Couvreur P,Nicolas J.Recent trends in the design of anticancer polymer prodrug nanocarriers[J].Polym Chem,2014,5(5):1529-1544.
    [8] Goodarzi N,Varshochian R,Kamalinia G,et al.A review of polysaccharide cytotoxic drug conjugates for cancer therapy[J].Carbohydr Polym,2013,92(2):1280-1293.
    [9] Fang JY,Al-Suwayeh SA.Nanoparticles as delivery carriers for anticancer prodrugs[J].Expert Opin Drug Deliv,2012,9(6):657-669.
    [10] Hobbs SK,Monsky WL,Yuan F,et al.Regulation of transport pathways in tumor vessels:role of tumor type and microenvironment[J].Proc Natl Acad Sci U S A,1998,95(8):4607-4612.
    [11] Duncan R.Polymer conjugates as anticancer nanomedicines[J].Nat Rev Cancer,2006,6(9):688-701.
    [12] Luo C,Sun J,Sun BJ,et al.Prodrug-based nanoparticulate drug delivery strategies for cancer therapy[J].Trends Pharmacol Sci,2014,35(11):556-566.
    [13] Patnaik A,Papadopoulos KP,Tolcher AW,et al.Phase I dose-escalation study of EZN-2208(PEG-SN38),a novel conjugate of poly(ethylene)glycol and SN38,administered weekly in patients with advanced cancer[J].Cancer Chemother Pharmacol,2013,71(6):1499-1506.
    [14] van der Meel R,Vehmeijer LJ,Kok RJ,et al.Ligand-targeted particulate nanomedicines undergoing clinical evaluation:current status[J].Adv Drug Deliv Rev,2013,65(10):1284-1298.
    [15] Detampel P,Witzigmann D,Krähenbühl S,et al.Hepatocyte targeting using pegylated asialofetuin-conjugated liposomes[J].J Drug Target,2014,22(3):232-241.
    [16] van Furth R,Cohn ZA,Hirsch JG,et al.The mononuclear phagocyte system:a new classification of macrophages,monocytes,and their precursor cells[J].Bull World Health Organ,1972,46(6):845-852.
    [17] Bhattacharyya S,Bhattacharya R,Curley S,et al.Nanoconjugation modulates the trafficking and mechanism of antibody induced receptor endocytosis[J].Proc Natl Acad Sci U S A,2010,107(33):14541-14546.
    [18] Bhattacharyya S,Singh RD,Pagano R,et al.Switching the targeting pathways of a therapeutic antibody by nanodesign[J].Angew Chem Int Ed Engl,2012,51(7):1563-1567.
    [19] Seymour LW,Ferry DR,Anderson D,et al.Hepatic drug targeting:phase I evaluation of polymer-bound doxorubicin[J].J Clin Oncol,2002,20(6):1668-1676.
    [20] Ge ZS,Liu SY.Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance[J].Chem Soc Rev,2013,42(17):7289-7325.
    [21] Hu JM,Liu SY.Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications[J].ACC Chem Res,2014,47(7):2084-2095.
    [22] Yin Q,Shen JN,Zhang ZW,et al.Reversal of multidrug resistance by stimuli-responsive drug delivery systems for therapy of tumor[J].Adv Drug Deliv Rev,2013,65(13/14):1699-1715.
    [23] MacEwan SR,Callahan DJ,Chilkoti A.Stimulus-responsive macromolecules and nanoparticles for cancer drug delivery[J].Nanomedicine(Lond),2010,5(5):793-806.
    [24] Tang RP,Ji WH,Panus D,et al.Block copolymer micelles with acid-labile ortho ester side-chains:synthesis,characterization,and enhanced drug delivery to human glioma cells[J].J Control Release,2011,151(1):18-27.
    [25] Li XQ,Wen HY,Dong HQ,et al.Self-assembling nanomicelles of a novel camptothecin prodrug engineered with a redox-responsive release mechanism[J].Chem Commun(Camb),2011,47(30):8647-8649.
    [26] She WC,Li N,Luo K,et al.Dendronized heparin-doxorubicin conjugate based nanoparticle as pH-responsive drug delivery system for cancer therapy[J].Biomaterials,2013,34(9):2252-2264.
    [27] She WC,Luo K,Zhang CY,et al.The potential of self-assembled,pH-responsive nanoparticles of mPEGylated peptide dendron-doxorubicin conjugates for cancer therapy[J].Biomaterials,2013,34(5):1613-1623.
    [28] Lu DX,Wen XT,Liang J,et al.A pH-sensitive nano drug delivery system derived from pullulan/doxorubicin conjugate[J].J Biomed Mater Res Part B Appl Biomater,2009,89(1):177-183.
    [29] Koning C,Ikker A,Borggreve R,et al.Reactive blending of poly(styrene-co-maleic anhydride)with poly(phenylene oxide)by addition of α-amino-polystyrene[J].Polymer,1993,34(21):4410-4416.
    [30] Akram M,Wang L,Yu HJ,et al.Polyphophazenes as anti-cancer drug carriers:from synthesis to application[J].Prog Polym Sci,2014,39(12):1987-2009.
    [31] Ríhová B, Etrych T, Pechar M, et al. Doxorubicin bound to a HPMA copolymer carrier through hydrazone bond is effective also in a cancer cell line with a limited content of lysosomes[J].J Control Release,2001,74(1/2/3):225-232.
    [32] Zhan FX,Chen W,Wang ZJ,et al.Acid-activatable prodrug nanogels for efficient intracellular doxorubicin release[J].Biomacromolecules,2011,12(10):3612-3620.
    [33] Chu KS,Finniss MC,Schorzman AN,et al.Particle replication in nonwetting templates nanoparticles with tumor selective alkyl silyl ether docetaxel prodrug reduces toxicity[J].Nano Lett,2014,14(3):1472-1476.
    [34] Gu YD,Zhong YN,Meng FH,et al.Acetal-linked paclitaxel prodrug micellar nanoparticles as a versatile and potent platform for cancer therapy[J].Biomacromolecules,2013,14(8):2772-2780.
    [35] Zhou ZX,Ma XP,Jin EL,et al.Linear-dendritic drug conjugates forming long-circulating nanorods for cancer-drug delivery[J].Biomaterials,2013,34(22):5722-5735.
    [36] Zhou ZX,Ma XP,Jin EL,et al.Linear-dendritic drug conjugates forming long-circulating nanorods for cancer-drug delivery[J].Biomaterials,2013,34(22):5722-5735.
    [37] Eloi JC,Rider DA,Cambridge G,et al.Stimulus-responsive self-assembly:reversible,redox-controlled micellization of polyferrocenylsilane diblock copolymers[J].J Am Chem Soc,2011,133(23):8903-8913.
    [38] Takakusagi Y,Takakusagi K,Kuramochi K,et al.Identification of C10 biotinylated camptothecin(CPT-10-B)binding peptides using T7 phage display screen on a QCM device[J].Bioorg Med Chem,2007,15(24):7590-7598.
    [39] Tang C,Feller L,Rossbach P,et al.Adsorption and electrically stimulated desorption of the triblock copolymer poly(propylene sulfide-bl-ethylene glycol)(PPS-PEG)from indium tin oxide(ITO)surfaces[J].Surf Sci,2006,600(7):1510-1517.
    [40] Conover CD,Greenwald RB,Pendri A,et al.Camptothecin delivery systems:enhanced efficacy and tumor accumulation of camptothecin following its conjugation to polyethylene glycol via a Glycine linker[J].Cancer Chemother Pharmacol,1998,42(5):407-414.
    [41] Deng T,Mao XL,Xiao Y,et al.Monodisperse oligoethylene glycols modified Camptothecin,10-hydroxycamptothecin and SN38 prodrugs[J].Bioorg Med Chem Lett,2019,29(4):581-584.
    [42] Luo C,Sun J,Sun BJ,et al.Prodrug-based nanoparticulate drug delivery strategies for cancer therapy[J].Trends Pharmacol Sci,2014,35(11):556-566.
    [43] Yang Y,Pan DY,Luo K,et al.Biodegradable and amphiphilic block copolymer-doxorubicin conjugate as polymeric nanoscale drug delivery vehicle for breast cancer therapy[J].Biomaterials,2013,34(33):8430-8443.
    [44] Dai YL,Xiao HH,Liu JH,et alIn vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles[J].J Am Chem Soc,2013,135(50):18920-18929.
    [45] Bhattacharyya J,Bellucci JJ,Weitzhandler I,et al.A paclitaxel-loaded recombinant polypeptide nanoparticle outperforms abraxane in multiple murine cancer models[J].Nat Commun,2015,6:7939.
    [46] Frascione D,Diwoky C,Almer G,et al.Ultrasmall superparamagnetic iron oxide(USPIO)-based liposomes as magnetic resonance imaging probes[J].Int J Nanomedicine,2012,7:2349-2359.
    [47] Xiao HH,Noble GT,Stefanick JF,et al.Photosensitive Pt(IV)-azide prodrug-loaded nanoparticles exhibit controlled drug release and enhanced efficacy in vivo[J].J Control Release,2014,173:11-17.
    [48] Eldar-Boock A,Polyak D,Scomparin A,et al.Nano-sized polymers and liposomes designed to deliver combination therapy for cancer[J].Curr Opin Biotechnol,2013,24(4):682-689.
    [49] Lammers T,Subr V,Ulbrich K,et al.Polymeric nanomedicines for image-guided drug delivery and tumor-targeted combination therapy[J].Nano Today,2010,5(3):197-212.
    [50] Park SR,Davis M,Doroshow JH,et al.Safety and feasibility of targeted agent combinations in solid tumours[J].Nat Rev Clin Oncol,2013,10(3):154-168.
    [51] Kolishetti N, Dhar S, Valencia PM, et al. Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy[J].Proc Natl Acad Sci U S A,2010,107(42):17939-17944.
    [52] Duan XP,Xiao JS,Yin Q,et al.Smart pH-sensitive and temporal-controlled polymeric micelles for effective combination therapy of doxorubicin and disulfiram[J].ACS Nano,2013,7(7):5858-5869.
计量
  • 文章访问数:  681
  • HTML全文浏览量:  2
  • PDF下载量:  1219
  • 被引次数: 0
出版历程
  • 刊出日期:  2019-08-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭