• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

磁性氧化铁纳米粒在肿瘤诊疗一体化中的应用

龚斯曼, 蓝思逸, 李菁, 孙敏捷

龚斯曼, 蓝思逸, 李菁, 孙敏捷. 磁性氧化铁纳米粒在肿瘤诊疗一体化中的应用[J]. 中国药科大学学报, 2019, 50(5): 531-539. DOI: 10.11665/j.issn.1000-5048.20190504
引用本文: 龚斯曼, 蓝思逸, 李菁, 孙敏捷. 磁性氧化铁纳米粒在肿瘤诊疗一体化中的应用[J]. 中国药科大学学报, 2019, 50(5): 531-539. DOI: 10.11665/j.issn.1000-5048.20190504
GONG Siman, LAN Siyi, LI Jing, SUN Minjie. Application of iron oxide magnetic nanoparticles in tumor theranostics[J]. Journal of China Pharmaceutical University, 2019, 50(5): 531-539. DOI: 10.11665/j.issn.1000-5048.20190504
Citation: GONG Siman, LAN Siyi, LI Jing, SUN Minjie. Application of iron oxide magnetic nanoparticles in tumor theranostics[J]. Journal of China Pharmaceutical University, 2019, 50(5): 531-539. DOI: 10.11665/j.issn.1000-5048.20190504

磁性氧化铁纳米粒在肿瘤诊疗一体化中的应用

基金项目: 国家自然科学基金资助项目(No.81573377)

Application of iron oxide magnetic nanoparticles in tumor theranostics

  • 摘要: 随着纳米技术在肿瘤学领域的高速发展,肿瘤治疗正迅速转向为更加精准的个性化治疗,具备肿瘤诊断和治疗能力的诊疗一体化制剂由此成为新的研究热点。磁性氧化铁纳米粒(IONP)由于其独特的成像性能、稳定的产热性能、较好的生物相容性及表面易于修饰的特点而广泛应用于诊疗一体化体系中。本文分析了IONP用于肿瘤诊断和治疗的优势,并详细介绍了近年来的新兴策略和研究进展,包括磁共振成像技术、光热疗技术、磁热疗技术和磁靶向技术等。最后,对IONP在临床肿瘤诊疗一体化中的应用提出了设想与展望。
    Abstract: With the rapid development of nanotechnology, accurate personalized treatments for tumor have attracted more attention to increase the therapeutic effects and reduce the side effects. The emerging theranostic systems incorporating different therapeutic and diagnostic imaging capabilities have become a new research hotspot. Magnetic iron oxide nanoparticles(IONP)have been widely used in theranostic systems due to their unique imaging properties, stable thermal performance, excellent biocompatibility and admirable surface modifiability. In this review, we analyzed the advantages of IONP in the diagnosis and the treatment of tumor, and detailedly introduced the relevant strategies and latest research progress, including magnetic resonance imaging(MRI), photothermal therapy, magnetic hyperthermia, and magnetic targeted drug delivery, etc. Finally, the potential application of IONP in the clinical tumor theranostics was proposed.
  • [1] Funkhouser J. Reinventing pharma: the theranostic revolution[J].Curr Drug Discov,2002,2:17-19.
    [2] Li B,Gu Z,Kurniawan N,et al.Manganese-based layered double hydroxide nanoparticles as a T1-MRI contrast agent with ultrasensitive ph response and high relaxivity[J].Adv Mater, 2017,29(29):1700373.
    [3] Swierczewska M, Han HS, Kim K, et al. Polysaccharide-based nanoparticles for theranostic nanomedicine[J].Adv Drug Deliv Rev,2016,99(Pt A):70-84.
    [4] Kwon HJ,Shin K,Soh M,et al.Large-scale synthesis and medical applications of uniform-sized metal oxide nanoparticles[J].Adv Mater,2018,30(42):e1704290.
    [5] Wang ZL, Qiao RR, Tang N, et al. Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonance-guided focused ultrasound ablation of lung cancer[J].Biomaterials,2017,127:25-35.
    [6] Patsula V,Kosinová L,Lovri'c M,et al.Superparamagnetic Fe3O4 nanoparticles:synthesis by thermal decomposition of iron(III)glucuronate and application in magnetic resonance imaging[J].ACS Appl Mater Interfaces,2016,8(11):7238-7247.
    [7] Zhou LJ,Liu JP,Xiong F,et al.Preparation and in vitro evaluation of PEG-coated superparamagnetic iron oxide nanoparticles[J].J China Pharm Univ(中国药科大学学报),2013,44(4):316-320.
    [8] Zhang YT,Li D,Yu M,et al.Fe3O4/PVIM-Ni2+ magnetic composite microspheres for highly specific separation of histidine-rich proteins[J].ACS Appl Mater Interfaces,2014,6(11):8836-8844.
    [9] Li JC,Hu Y,Yang J,et al.Hyaluronic acid-modified Fe3O4@Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors[J].Biomaterials,2015,38:10-21.
    [10] Yao J,Xiong F,Zhu ZY,et al.Preparation and in vitro evaluation of vincristine-loaded superparamagnetic iron oxide nanoparticles[J].J China Pharm Univ(中国药科大学学报),2012,43(3):222-225.
    [11] Kim KS,Kim J,Lee JY,et al.Stimuli-responsive magnetic nanoparticles for tumor-targeted bimodal imaging and photodynamic/hyperthermia combination therapy[J].Nanoscale,2016,8(22):11625-11634.
    [12] Shi W,Liu XY,Wei C,et al.Micro-optical coherence tomography tracking of magnetic gene transfection via Au-Fe3O4 dumbbell nanoparticles[J].Nanoscale,2015,7(41):17249-17253.
    [13] Das R,Rinaldi-Montes N,Alonso J,et al.Boosted hyperthermia therapy by combined AC magnetic and photothermal exposures in Ag/Fe3O4 nanoflowers[J].ACS Appl Mater Interfaces,2016,8(38):25162-25169.
    [14] Sun X,Du RH,Zhang L,et al.A pH-responsive yolk-like nanoplatform for tumor targeted dual-mode magnetic resonance imaging and chemotherapy[J].ACS Nano,2017,11(7):7049-7059.
    [15] Hou WX,Toh TB,Abdullah LN,et al.Nanodiamond-Manganese dual mode MRI contrast agents for enhanced liver tumor detection[J].Nanomed-Nanotechnol Biol Med,2017,13(3):783-793.
    [16] Jia ZY,Song LN,Zang FC,et al.Active-target T1-weighted MR imaging of tiny hepatic tumor via RGD modified ultra-small Fe3O4 nanoprobes[J].Theranostics,2016,6(11):1780-1791.
    [17] Gao ZY,Hou Y,Zeng JF,et al.Tumor microenvironment-triggered aggregation of antiphagocytosis 99mTc-labeled Fe3O4 nanoprobes for enhanced tumor imaging in vivo[J].Adv Mater,2017,29(24).
    [18] Zhou ZJ,Tian R,Wang ZY,et al.Artificial local magnetic field inhomogeneity enhances T2 relaxivity[J].Nat Commun,2017,8:15468.
    [19] Wu CQ,Xu Y,Yang L,et al.Negatively charged magnetite nanoparticle clusters as efficient MRI probes for dendritic cell labeling and in vivo tracking[J].Adv Funct Mater,2015,25(23):3581-3591.
    [20] Mashhadi Malekzadeh A,Ramazani A,Tabatabaei Rezaei SJ,et al.Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy[J].J Colloid Interface Sci,2017,490:64-73.
    [21] Kim BH,Lee N,Kim H,et al.Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents[J].J Am Chem Soc,2011,133(32):12624-12631.
    [22] Wei H,Bruns OT,Kaul MG,et al.Exceedingly small iron oxide nanoparticles as positive MRI contrast agents[J].Proc Natl Acad Sci U S A,2017,114(9):2325-2330.
    [23] Clavijo Jordan MV,Beeman SC,Baldelomar EJ,et al.Disruptive chemical doping in a ferritin-based iron oxide nanoparticle to decrease r2 and enhance detection with T1-weighted MRI[J].Contrast Media Mol Imaging,2014,9(5):323-332.
    [24] Zhang H,Li L,Liu XL,et al.Ultrasmall ferrite nanoparticles synthesized via dynamic simultaneous thermal decomposition for high-performance and multifunctional T1 magnetic resonance imaging contrast agent[J].ACS Nano,2017,11(4):3614-3631.
    [25] Jung H,Park B,Lee C,et al.Dual MRI T1 and T2(*)contrast with size-controlled iron oxide nanoparticles[J].Nanomed: Nanotechnol Biol Med,2014,10(8):1679-1689.
    [26] Yang LJ,Wang ZY,Ma LC,et al.The roles of morphology on the relaxation rates of magnetic nanoparticles[J].ACS Nano,2018,12(5):4605-4614.
    [27] Wang LY,Huang J,Chen HB,et al.Exerting enhanced permeability and retention effect driven delivery by ultrafine iron oxide nanoparticles with T1-T2 switchable magnetic resonance imaging contrast[J].ACS Nano,2017,11(5):4582-4592.
    [28] Zhou HG,Tang JL,Li JY,et al.In vivo aggregation-induced transition between T1 and T2 relaxations of magnetic ultra-small iron oxide nanoparticles in tumor microenvironment[J].Nanoscale,2017,9(9):3040-3050.
    [29] Hildebrandt B,Wust P,Ahlers O,et al.The cellular and molecular basis of hyperthermia[J].Crit Rev Oncol Hematol,2002,43(1):33-56.
    [30] Zhao YJ,Song WX,Wang D,et al.Phase-shifted PFH@PLGA/Fe3O4 nanocapsules for MRI/US imaging and photothermal therapy with near-infrared irradiation[J].ACS Appl Mater Interfaces,2015,7(26):14231-14242.
    [31] Shen S,Wang S,Zheng R,et al.Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation[J].Biomaterials,2015,39:67-74.
    [32] Liu T,Shi SX,Liang C,et al.Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy[J].ACS Nano,2015,9(1):950-960.
    [33] Lin LS,Cong ZX,Cao JB,et al.Multifunctional Fe3O4@polydopamine core-shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy[J].ACS Nano,2014,8(4):3876-3883.
    [34] Feng W,Han XG,Wang RY,et al.Nanocatalysts-augmented and photothermal-enhanced tumor-specific sequential nanocatalytic therapy in both NIR-I and NIR-II biowindows[J].Adv Mater Weinheim,2019,31(5):e1805919.
    [35] Wu L,Chen L,Liu F,et al.Remotely controlled drug release based on iron oxide nanoparticles for specific therapy of cancer[J].Colloids Surf B Biointerfaces,2017,152:440-448.
    [36] Yu GT,Rao L,Wu H,et al.Cancer theranostics:myeloid-derived suppressor cell membrane-coated magnetic nanoparticles for cancer theranostics by inducing macrophage polarization and synergizing immunogenic cell death(adv.funct.mater.37/2018)[J].Adv Funct Mater,2018,28(37):1870265.
    [37] Wang WW,Hao CL,Sun MZ,et al.Spiky Fe3O4@Au supraparticles for multimodal in vivo imaging[J].Adv Funct Mater,2018,28(22):1800310.
    [38] Le Fèvre R,Durand-Dubief M,Chebbi I,et al.Enhanced antitumor efficacy of biocompatible magnetosomes for the magnetic hyperthermia treatment of glioblastoma[J].Theranostics,2017,7(18):4618-4631.
    [39] Tay ZW,Chandrasekharan P,Chiu-Lam A,et al.Magnetic particle imaging-guided heating in vivo using gradient Fields for arbitrary localization of magnetic hyperthermia therapy[J].ACS Nano,2018,12(4):3699-3713.
    [40] Chang D,Lim M,Goos JACM,et al.Biologically targeted magnetic hyperthermia:potential and limitations[J].Front Pharmacol,2018,9:831.
    [41] Obaidat IM,Issa B,Haik Y.Magnetic properties of magnetic nanoparticles for efficient hyperthermia[J].Nanomaterials(Basel),2015,5(1):63-89.
    [42] Ding Q,Liu DF,Guo DW,et al.Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia[J].Biomaterials,2017,124:35-46.
    [43] Di Corato R,Béalle G,Kolosnjaj-Tabi J,et al.Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes[J].ACS Nano,2015,9(3):2904-2916.
    [44] Espinosa A,Di Corato R,Kolosnjaj-Tabi J,et al.Duality of iron oxide nanoparticles in cancer therapy:amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment[J].ACS Nano,2016,10(2):2436-2446.
    [45] Huang YP, Mao KL, Zhang BL, et al. Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics[J].Mater Sci Eng C Mater Biol Appl,2017,70(Pt 1):763-771.
    [46] Zhang FR, Gong SM, Wu J, et al. CXCR4-targeted and redox responsive dextrin nanogel for metastatic breast cancer therapy[J].Biomacromolecules,2017,18(6):1793-1802.
    [47] Shin JM,Oh SJ,Kwon S,et al.A PEGylated hyaluronic acid conjugate for targeted cancer immunotherapy[J].J Control Release,2017,267:181-190.
    [48] Ruan SB,Yuan MQ,Zhang L,et al.Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles[J].Biomaterials,2015,37:425-435.
    [49] Theek B,Baues M,Gremse F,et al.Histidine-rich glycoprotein-induced vascular normalization improves EPR-mediated drug targeting to and into tumors[J].J Control Release,2018,282:25-34.
    [50] Fenaroli F,Repnik U,Xu YT,et al.Enhanced permeability and retention-like extravasation of nanoparticles from the vasculature into tuberculosis granulomas in zebrafish and mouse models[J].ACS Nano,2018,12(8):8646-8661.
    [51] Wang ZH,Zhou CF,Xia JF,et al.Fabrication and characterization of a triple functionalization of graphene oxide with Fe3O4,folic acid and doxorubicin as dual-targeted drug nanocarrier[J].Colloids Surf B Biointerfaces,2013,106:60-65.
    [52] Liu YL,Chen D,Shang P,et al.A review of magnet systems for targeted drug delivery[J].J Control Release,2019,302:90-104.
    [53] Li SY,Li C,Jin SB,et al.Overcoming resistance to cisplatin by inhibition of glutathione S-transferases(GSTs)with ethacraplatin micelles in vitro and in vivo[J].Biomaterials,2017,144:119-129.
    [54] Ray Chowdhuri A,Bhattacharya D,Sahu SK.Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery,imaging and as an MRI contrast agent[J].Dalton Trans,2016,45(7):2963-2973.
    [55] Nowicka AM,Kowalczyk A,Jarzebinska A,et al.Progress in targeting tumor cells by using drug-magnetic nanoparticles conjugate[J].Biomacromolecules,2013,14(3):828-833.
    [56] Yang GB,Gong H,Liu T,et al.Two-dimensional magnetic WS2@Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer[J].Biomaterials,2015,60:62-71.
    [57] Shen ZY,Chen TX,Ma XH,et al.Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for T1-weighted magnetic resonance imaging and chemotherapy[J].ACS Nano,2017,11(11):10992-11004.
    [58] Zhou ZW,Zhang QY,Zhang MH,et al.ATP-activated decrosslinking and charge-reversal vectors for siRNA delivery and cancer therapy[J].Theranostics,2018,8(17):4604-4619.
    [59] Rouanet M,Lebrin M,Gross F,et al.Gene therapy for pancreatic cancer:specificity,issues and hopes[J].Int J Mol Sci,2017,18(6):E1231.
    [60] Shen LZ,Li B,Qiao YS.Fe3O4 nanoparticles in targeted drug/gene delivery systems[J].Materials(Basel),2018,11(2):E324.
    [61] Choi JW,Park JW,Na YJ,et al.Using a magnetic field to redirect an oncolytic adenovirus complexed with iron oxide augments gene therapy efficacy[J].Biomaterials,2015,65:163-174.
    [62] Yang YF, Xie XY, Xu XQ, et al. Thermal and magnetic dual-responsive liposomes with a cell-penetrating peptide-siRNA conjugate for enhanced and targeted cancer therapy[J].Colloids Surf B Biointerfaces,2016,146:607-615.
    [63] Yang H,Chen Y,Chen ZY,et al.Chemo-photodynamic combined gene therapy and dual-modal cancer imaging achieved by pH-responsive alginate/chitosan multilayer-modified magnetic mesoporous silica nanocomposites[J].Biomater Sci,2017,5(5):1001-1013.
    [64] Li TT, Shen X, Geng Y, et al. Folate-functionalized magnetic-mesoporous silica nanoparticles for drug/gene codelivery to potentiate the antitumor efficacy[J].ACS Appl Mater Interfaces,2016,8(22):13748-13758.
    [65] Jia HZ,Wang W,Zheng DW,et al.Multifunctional nanotherapeutics with all-in-one nanoentrapment of drug/gene/inorganic nanoparticle[J].ACS Appl Mater Interfaces,2016,8(11):6784-6789.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 刊出日期:  2019-10-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭