• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

近红外二区荧光/光声双模态成像脂质体的制备与表征

刘洋, 王紫安, 蒋逸飞, 吉民, 王鹏

刘洋, 王紫安, 蒋逸飞, 吉民, 王鹏. 近红外二区荧光/光声双模态成像脂质体的制备与表征[J]. 中国药科大学学报, 2019, 50(5): 560-564. DOI: 10.11665/j.issn.1000-5048.20190508
引用本文: 刘洋, 王紫安, 蒋逸飞, 吉民, 王鹏. 近红外二区荧光/光声双模态成像脂质体的制备与表征[J]. 中国药科大学学报, 2019, 50(5): 560-564. DOI: 10.11665/j.issn.1000-5048.20190508
LIU Yang, WANG Zian, JIANG Yifei, JI Min, WANG Peng. Preparation and characterization of the second near-infrared window fluorescent/photoacoustic imaging liposomes[J]. Journal of China Pharmaceutical University, 2019, 50(5): 560-564. DOI: 10.11665/j.issn.1000-5048.20190508
Citation: LIU Yang, WANG Zian, JIANG Yifei, JI Min, WANG Peng. Preparation and characterization of the second near-infrared window fluorescent/photoacoustic imaging liposomes[J]. Journal of China Pharmaceutical University, 2019, 50(5): 560-564. DOI: 10.11665/j.issn.1000-5048.20190508

近红外二区荧光/光声双模态成像脂质体的制备与表征

基金项目: 国家自然科学基金资助项目(No.81671745)

Preparation and characterization of the second near-infrared window fluorescent/photoacoustic imaging liposomes

  • 摘要: 近红外二区(NIR-II)荧光染料IR-1061水溶性差、量子产率低,限制其在生物医学方面的应用。本研究将脂质体作为载体材料,增加其水溶性,并且将近红外一区(NIR-I)荧光染料IR-780同时负载于脂质体,以增强IR-1061在NIR-II的荧光强度。结果表明,980 nm激光照射下,脂质体表现出显著增强的特征荧光。此外,对脂质体粒径、外观、光热转换效率、光声性能以及细胞毒性进行考察。结果显示,本研究所制备的复合物脂质体可作为NIR-II荧光/光声双模态成像体系,具有用于诊断和引导肿瘤光热治疗的潜力。
    Abstract: The second near-infrared window(NIR-II)fluorescent dye IR-1061 has the disadvantage of poorwater solubility and low quantum yield, which limits its application in biomedicine. We used liposomes as the carrier to increase their water solubility, and co-loaded a near-infrared region(NIR-I)fluorescent dye IR-780 into liposomes to enhance the fluorescence intensity of IR-1061 in NIR-II. Results showed that the liposomes exhibited significantly enhanced characteristic fluorescence under 980 nm laser irradiation. In addition, particle size, appearance, photothermal conversion efficiency, photoacoustic performance and cytotoxicity of liposomes were examined. This study showed that these combined liposomes exhibited potential as a NIR-II fluorescence/photoacoustic bimodal imaging system for the diagnosis and guidance of tumor photothermal therapy.
  • [1] Tao ZM,Hong GS,Shinji C,et al.Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm[J].Angew Chem Int Ed Engl,2013,52(49):13002-13006.
    [2] Bu LH,Shen BZ,Cheng Z.Fluorescent imaging of cancerous tissues for targeted surgery[J].Adv Drug Deliv Rev,2014,76:21-38.
    [3] Ding F,Zhan YB,Lu XJ,et al.Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging[J].Chem Sci,2018,9(19):4370-4380.
    [4] He SQ,Song J,Qu JL,et al.Crucial breakthrough of second near-infrared biological window fluorophores:design and synthesis toward multimodal imaging and theranostics[J].Chem Soc Rev,2018,47(12):4258-4278.
    [5] Hong GS,Antaris AL,Dai HJ.Near-infrared fluorophores for biomedical imaging[J].Nat Biomed Eng,2017,1:0010.
    [6] Yan DH,Wang B.Synthesis and characterization of Fe3O4@SiO2 magnetic- fluorescent bifunctional nanoparticles[J].J China Pharm Univ(中国药科大学学报),2012,43(4):307-311.
    [7] Dang XN,Gu L,Qi JF,et al.Layer-by-layer assembled fluorescent probes in the second near-infrared window for systemic delivery and detection of ovarian cancer[J].Proc Natl Acad Sci U S A,2016,113(19):5179-5184.
    [8] Zhang XD,Wang HS,Antaris AL,et al.Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore[J].Adv Mater Weinheim,2016,28(32):6872-6879.
    [9] Diao S,Hong GS,Antaris AL,et al.Biological imaging without autofluorescence in the second near-infrared region[J].Nano Res,2015,8(9):3027-3034.
    [10] Yu XJ,Yang K,Chen XY,et al.Black hollow silicon oxide nanoparticles as highly efficient photothermal agents in the second near-infrared window for in vivo cancer therapy[J].Biomaterials,2017,143:120-129.
    [11] Ma JJ,Yu MX,Zhang Z,et al.Gd-DTPA-coupled Ag2Se quantum dots for dual-modality magnetic resonance imaging and fluorescence imaging in the second near-infrared window[J].Nanoscale,2018,10(22):10699-10704.
    [12] Yang DP,Cao C,Feng W,et al.Synthesis of NaYF4:Nd@NaLuF4@SiO2@PS colloids for fluorescence imaging in the second biological window[J].J Rare Earths(中国稀土学报:英文版),2018,36(2):113-118.
    [13] Li YB,Li XL,Xue ZL,et al.Second near-infrared emissive lanthanide complex for fast renal-clearable in vivo optical bioimaging and tiny tumor detection[J].Biomaterials,2018,169:35-44.
    [14] Feng Y,Zhu SJ,Antaris AL,et al.Live imaging of follicle stimulating hormone receptors in gonads and bones using near infrared II fluorophore[J].Chem Sci,2017,8(5):3703-3711.
    [15] Hong GS,Zou YP,Antaris AL,et al.Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window[J].Nat Commun,2014,5:4206.
    [16] Wan H,Ma HL,Zhu SJ,et al.Developing a bright NIR-II fluorophore with fast renal excretion and its application in molecular imaging of immune checkpoint PD-L1[J].Adv Funct Mater,2018,28(50):1804956.
    [17] Zeh R,Sheikh S,Xia LL,et al.The second window ICG technique demonstrates a broad plateau period for near infrared fluorescence tumor contrast in glioblastoma[J].PLoS One,2017,12(7):e0182034.doi: 10.1371/journal.pone.0182034.
    [18] Starosolski Z,Bhavane R,Ghaghada KB,et al.Indocyanine green fluorescence in second near-infrared(NIR-II)window[J].PLoS One,2017,12(11):e0187563.
    [19] Tao ZM,Hong GS,Shinji C,et al.Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm[J].Angew Chem Int Ed Engl,2013,52(49):13002-13006.
计量
  • 文章访问数:  787
  • HTML全文浏览量:  1
  • PDF下载量:  1029
  • 被引次数: 0
出版历程
  • 刊出日期:  2019-10-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭