• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

DC靶向适配体修饰的载铜绿假单胞菌DNA疫苗递送系统的构建及体外评价

黄仕琴, 石敏, 何颖娜, 岳瀚勋, 余娴

黄仕琴, 石敏, 何颖娜, 岳瀚勋, 余娴. DC靶向适配体修饰的载铜绿假单胞菌DNA疫苗递送系统的构建及体外评价[J]. 中国药科大学学报, 2019, 50(6): 743-752. DOI: 10.11665/j.issn.1000-5048.20190616
引用本文: 黄仕琴, 石敏, 何颖娜, 岳瀚勋, 余娴. DC靶向适配体修饰的载铜绿假单胞菌DNA疫苗递送系统的构建及体外评价[J]. 中国药科大学学报, 2019, 50(6): 743-752. DOI: 10.11665/j.issn.1000-5048.20190616
HUANG Shiqin, SHI Min, HE Yingna, YUE Hanxun, YU Xian. Construction and in vitro evaluation of DC-targeted aptamer-modified Pseudomonas aeruginosa DNA vaccine delivery system[J]. Journal of China Pharmaceutical University, 2019, 50(6): 743-752. DOI: 10.11665/j.issn.1000-5048.20190616
Citation: HUANG Shiqin, SHI Min, HE Yingna, YUE Hanxun, YU Xian. Construction and in vitro evaluation of DC-targeted aptamer-modified Pseudomonas aeruginosa DNA vaccine delivery system[J]. Journal of China Pharmaceutical University, 2019, 50(6): 743-752. DOI: 10.11665/j.issn.1000-5048.20190616

DC靶向适配体修饰的载铜绿假单胞菌DNA疫苗递送系统的构建及体外评价

基金项目: 重庆市卫生计生委重点项目资助(No.2016ZDXM010)

Construction and in vitro evaluation of DC-targeted aptamer-modified Pseudomonas aeruginosa DNA vaccine delivery system

  • 摘要: 构建了一种DC靶向适配体修饰的铜绿假单胞菌(Pseudomonas aeruginosa,PA)DNA疫苗递送系统。采用乙醇注入法制备阳离子脂质体,静电吸附法制备载pVAX1-OprF-VP22的阳离子脂质体(Lip-pOprF-VP22),探讨不同DOTAP/pDNA质量比的Lip-pOprF-VP22对pVAX1-OprF-VP22的包封效果、对DC2.4的细胞毒性及转染率,筛选最佳质量比的Lip-pOprF-VP22测定其粒径及Zeta电位;后插法制备DC靶向适配体修饰的载pVAX1-OprF-VP22的阳离子脂质体(Apt-Lip-pOprF-VP22),检测其转染DC2.4后OprF蛋白的表达量及对小鼠骨髓来源树突状细胞(bone marrow-derived dendritic cells,BMDCs)成熟的影响。结果表明,Lip-pOprF-VP22随着DOTAP/pDNA质量比增加包封率逐渐增加,当质量比为5∶1时即能很好的包封pVAX1-OprF-VP22;当Lip-pOprF-VP22作用于DC2.4 24 h或48 h后,不同质量比的Lip-pOprF-VP22对DC2.4的存活率均在80%以上;当DOTAP/pDNA质量比由2∶1增加到10∶1,转染率表现为先增加、后降低的趋势,其中DOTAP/pDNA质量比为4∶1、5∶1时转染率相对较高;当DOTAP/pDNA质量比为5∶1时,Lip-pOprF-VP22粒径为(171.67±1.27)nm,Zeta电位为(11.30±0.57)mV;Apt-Lip-pOprF-VP22转染DC2.4后可表达更多OprF蛋白且可明显促进BMDCs的成熟。
    Abstract: This study aimed to construct a DC-targeted aptamer-modified Pseudomonas aeruginosa(PA)DNA vaccine delivery system. The cationic liposome was prepared by ethanol injection method. The cationic liposome loading pVAX1-OprF-VP22(Lip-pOprF-VP22)was prepared by electrostatic adsorption method. The encapsulation efficiency of Lip-pOprF-VP22 with different mass ratios of DOTAP/pDNA on pVAX1-OprF-VP22, cytotoxicity and transfection rate to DC2. 4 in vitro were discussed. The particle size and zeta potential of Lip-pOprF-VP22 with best mass ratio were tested. Aptamer-modified cationic liposome loading pVAX1-OprF-VP22(Apt-Lip-pOprF-VP22)was prepared by post-insertion method. The expression of OprF protein after transfection of DC2. 4 and its effect on the maturation of bone marrow-derived dendritic cells(BMDCs)were detected. Data showed that as the mass ratio of DOTAP/pDNA increased, the encapsulation efficiency of Lip-pOprF-VP22 on pVAX1-OprF-VP22 was gradually increased. When the mass ratio was 5 ∶1, pVAX1-OprF-VP22 was encapsulated well. When Lip-pOprF-VP22 with different mass ratios was applied to DC2. 4 for 24 h or 48 h, the survival rates of DC2. 4 were all above 80%. When the mass ratio of DOTAP/pDNA increased from 2 ∶1 to 10 ∶1, the transfection rate increased first and then decreased. When the mass ratios of DOTAP/pDNA were 4 ∶1 and 5 ∶1, the transfection rates were relatively high. When the mass ratio of DOTAP/pDNA was 5 ∶1, the particle size of Lip-pOprF-VP22 was(171. 67±1. 27)nm, and the Zeta potential was(11. 30±0. 57)mV. Furthermore, Apt-Lip-pOprF-VP22 can express more OprF protein and significantly promote the maturation of BMDCs. In conclusion, Apt-Lip-pOprF-VP22 can target to DC and promote the maturation of DC.
  • [1] Tran CS,Rangel SM,Almblad H,et al.The Pseudomonas aeruginosa type III translocon is required for biofilm formation at the epithelial barrier[J].PLoS Pathog,2014,10(11):e1004479.DOI: 10.1371/journal.ppat.1004479.
    [2] Bassetti M,Vena A,Croxatto A,et al.How to manage Pseudomonas aeruginosa infections[J].Drugs Context,2018,7:212527.
    [3] Hassan R,El-Naggar W,Abd El-Aziz AM,et al.Immunization with outer membrane proteins(OprF and OprI)and flagellin B protects mice from pulmonary infection with mucoid and nonmucoid Pseudomonas aeruginosa[J].J Microbiol Immunol Infect, 2018,51(3):312-320.
    [4] Yu X,Wang Y,Xia YF,et al.A DNA vaccine encoding VP22 of herpes Simplex virus type I(HSV-1)and OprF confers enhanced protection from Pseudomonas aeruginosa in mice[J].Vaccine,2016,34(37):4399-4405.
    [5] Ullstrom CA,Siehnel R,Woodruff W,et al.Conservation of the gene for outer membrane protein OprF in the family Pseudomonadaceae:sequence of the Pseudomonas syringae oprF gene[J].J Bacteriol, 1991,173(2):768-775.
    [6] Rello J,Krenn CG,Locker G,et al.A randomized placebo-controlled phase II study of a Pseudomonas vaccine in ventilated ICU patients[J].Crit Care,2017,21(1):22.
    [7] Lim S,Koo JH,Choi JM.Use of cell-penetrating peptides in dendritic cell-based vaccination[J].Immune Netw,2016,16(1):33-43.
    [8] Elliott G,O'Hare P.Intercellular trafficking and protein delivery by a herpesvirus structural protein[J].Cell,1997,88(2):223-233.
    [9] Zhen S, Takahashi Y, Narita S, et al. Targeted delivery of CRISPR/Cas9 to prostate cancer by modified gRNA using a flexible aptamer-cationic liposome[J].Oncotarget,2017,8(6):9375-9387.
    [10] Chen K,Liu B,Yu B,et al.Advances in the development of aptamer drug conjugates for targeted drug delivery[J].Wiley Interdiscip Rev Nanomed Nanobiotechnol,2017,9(3).doi: 10.1002/wnan.1438.
    [11] Ganji A,Varasteh A,Sankian M.Aptamers:new arrows to target dendritic cells[J].J Drug Target,2016,24(1):1-12.
    [12] Lahoud MH,Ahmet F,Zhang JG,et al.DEC-205 is a cell surface receptor for CpG oligonucleotides[J].Proc Natl Acad Sci U S A,2012,109(40):16270-16275.
    [13] Jiang W,Swiggard WJ,Heufler C,et al.The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing[J].Nature,1995,375(6527):151-155.
    [14] Wengerter BC,Katakowski JA,Rosenberg JM,et al.Aptamer-targeted antigen delivery[J].Mol Ther,2014,22(7):1375-1387.
    [15] Allen TM,Sapra P,Moase E.Use of the post-insertion method for the formation of ligand-coupled liposomes[J].Cell Mol Biol Lett,2002,7(3):889-894.
    [16] Inaba K,Inaba M,Romani N,et al.Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor[J].J Exp Med,1992, 176(6):1693-1702.
    [17] Schwendener RA. Liposomes as vaccine delivery systems: a review of the recent advances[J].Ther Adv Vaccines,2014,2(6):159-182.
    [18] Heurtault B,Saulnier P,Pech B,et al.Physico-chemical stability of colloidal lipid particles[J].Biomaterials,2003,24(23):4283-4300.
    [19] Xu Y,Shi L,Deng YH.Effect of polyethylene glycol-lipid derivatives on the stability of grafted liposomes[J].Acta Pharm Sin(药学学报),2011,46(10):1178-1186.
    [20] Fischer D,Bieber T,Li Y,et al.A novel non-viral vector for DNA delivery based on low molecular weight,branched polyethylenimine:effect of molecular weight on transfection efficiency and cytotoxicity[J].Pharm Res,1999,16(8):1273-1279.
    [21] Villate-Beitia I, Truong NF, Gallego I, et al. Hyaluronic acid hydrogel scaffolds loaded with cationic niosomes for efficient non-viral gene delivery[J].RSC Adv,2018,8(56):31934-31942.
    [22] Yuan DF,Sun MJ,Wang Y,et al.Preparation and in vitro characterization of octreotide-targeting doxorubicin liposome[J].J China Pharm Univ(中国药科大学学报),2011,42(13):223-229.
    [23] Kala S,Mak AS,Liu XX,et al.Combination of dendrimer-nanovector-mediated small interfering RNA delivery to target Akt with the clinical anticancer drug paclitaxel for effective and potent anticancer activity in treating ovarian cancer[J].J Med Chem,2014,57(6):2634-2642.
    [24] Swanson JA.Shaping cups into phagosomes and macropinosomes[J].Nat Rev Mol Cell Biol,2008,9(8):639-649.
  • 期刊类型引用(8)

    1. 吴菊华,李俊锋,陶雷. 基于知识图谱嵌入与深度学习的药物不良反应预测. 广东工业大学学报. 2024(01): 19-26+40 . 百度学术
    2. 任韡,黄彦,朱枫,喻锦扬,王青. 智能化药品不良反应报告辅助评价工具研究. 中国食品药品监管. 2024(09): 122-129 . 百度学术
    3. 荣丹琪,王倩,唐丽,司婉雨,赵鸿萍. 基于特征的深度学习预测化合物-蛋白质相互作用的研究进展. 中国药科大学学报. 2023(03): 305-313 . 本站查看
    4. 由丽萍,王世钰,李朝翻. 基于框架语义分析的社交网络药品不良事件抽取. 医学信息学杂志. 2023(07): 57-62 . 百度学术
    5. 卢恒,陈章杰,周知. 基于知识图谱的虚拟学术社区用户生成内容知识共聚框架研究. 情报理论与实践. 2023(12): 157-166+192 . 百度学术
    6. 仲雨乐,马诗雯,陆豪杰,韩普. 基于机器学习的药品不良反应实体识别研究综述. 软件工程. 2022(08): 1-6 . 百度学术
    7. 陈伟,吴云志,涂凌,刘航,余克健,乐毅. 基于多头自注意力机制的实体识别研究. 蚌埠学院学报. 2022(05): 54-60 . 百度学术
    8. 潘文洁,尹泽宇,侯婉馨,Jawad Hussain,张远鹏,姚敏,王理. 基于医学科研与临床应用的药物知识库研究进展. 中华临床医师杂志(电子版). 2021(01): 72-78 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  401
  • HTML全文浏览量:  0
  • PDF下载量:  849
  • 被引次数: 11
出版历程
  • 刊出日期:  2019-12-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭