高级检索

基于深度学习模型的我国药品不良反应报告实体关系抽取研究

Research on entity relation extraction of Chinese adverse drug reaction reports based on deep learning method

  • 摘要: 药品不良反应(adverse drug reaction,ADR)报告作为药品上市后安全评价的主要载体,对药物安全评价研究具有重要的参考价值。本文以深度学习模型中的双向门控循环单元(bidirectional gated recurrent unit,Bi-GRU)结构为基础,引入注意力机制以及字向量与分词向量优化模型,对我国ADR报告中的ADR过程描述部分进行“药品-不良反应”的关系抽取研究。实验结果表明,基于深度学习的实体关系抽取模型在确认不良反应描述中“药品-不良反应”对之间的关系(否认、可能、直接和后处理)的分类任务中达到了很好的性能,最终模型取得87.52%的F值。所提取的信息在辅助ADR报告评价的同时,可进一步运用于特定药物的不良反应统计学研究以及知识库构建等任务中,从而为药物安全性评价研究提供更多的研究手段。

     

    Abstract: Adverse drug reaction(ADR)reports are acting as primary sources for post-marketing drug safety evaluation, which have important reference value for drug safety evaluation. In this article, bidirectional gated recurrent unit, a kind of deep learning method, was applied as the model for relation extraction of drugs and adverse reactions in free-text section of ADR descriptions in Chinese ADR reports, with attention as well as character embedding and word segmentation embedding added into the network. The experimental results showed that our model achieved good performance in the classification task of confirming the relationship of “Drug-ADR” pair(denial, likely, direct and post-therapy)in the ADR description, and the final model achieved an F-value of 87. 52%. The extracted information can assist in evaluating ADR reports and at the same time be utilized in tasks like statistical analysis of certain drugs and adverse events and ADR knowledge base construction to provide more research techniques for drug safety researches.

     

/

返回文章
返回