• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

CRISPR/Cas9递送系统的研究现状及应用进展

潘秀华, 吴正红, 祁小乐

潘秀华, 吴正红, 祁小乐. CRISPR/Cas9递送系统的研究现状及应用进展[J]. 中国药科大学学报, 2020, 51(1): 10-18. DOI: 10.11665/j.issn.1000-5048.20200102
引用本文: 潘秀华, 吴正红, 祁小乐. CRISPR/Cas9递送系统的研究现状及应用进展[J]. 中国药科大学学报, 2020, 51(1): 10-18. DOI: 10.11665/j.issn.1000-5048.20200102
PAN Xiuhua, WU Zhenghong, QI Xiaole. Research status and application progress of CRISPR/Cas9 delivery system[J]. Journal of China Pharmaceutical University, 2020, 51(1): 10-18. DOI: 10.11665/j.issn.1000-5048.20200102
Citation: PAN Xiuhua, WU Zhenghong, QI Xiaole. Research status and application progress of CRISPR/Cas9 delivery system[J]. Journal of China Pharmaceutical University, 2020, 51(1): 10-18. DOI: 10.11665/j.issn.1000-5048.20200102

CRISPR/Cas9递送系统的研究现状及应用进展

基金项目: 中国药科大学双一流国际药品注册创新团队资助项目(No.CPU2018GY40)

Research status and application progress of CRISPR/Cas9 delivery system

  • 摘要: 针对CRISPR/Cas9系统在DNA、RNA和蛋白3种水平的递送形式,本文着重介绍了CRISPR/Cas9系统的病毒载体和非病毒载体的研究现状和CRISPR/Cas9系统递送的新策略,及其在生物医学领域和基因相关疾病治疗的应用进展。通过对CRISPR/Cas9系统递送和基因治疗策略进行总结与阐述,为创新药物的发现和基因治疗的开发提供新思路。
    Abstract: Based on the three delivery forms of CRISPR/Cas9 system at the levels of DNA, RNA and protein, this paper mainly approaches the development and new strategies of CRISPR/Cas9 delivery systems, as well as their application in the biomedical field and the clinical treatment of gene-related diseases. By summarizing and elaborating the CRISPR/Cas9 system delivery and gene therapy strategy, new ideas are provided for the discovery of innovative drugs and the development of gene therapy.
  • [1] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J].Science,2012,337(6096):816-821.
    [2] Sander JD,Joung JK.CRISPR-Cas systems for editing,regulating and targeting genomes[J].Nat Biotechnol,2014,32(4):347-355.
    [3] Ghosh D,Venkataramani P,Nandi S,et al.CRISPR-Cas9 a boon or bane:the bumpy road ahead to cancer therapeutics[J].Cancer Cell Int,2019,19:12.
    [4] Laustsen A,Bak RO.Electroporation-based CRISPR/Cas9 gene editing using Cas9 protein and chemically modified sgRNAs[J].Methods Mol Biol,2019,1961:127-134.
    [5] Strich JR,Chertow DS.CRISPR-cas biology and its application to infectious diseases[J].J Clin Microbiol,2019,57(4):e01307-e01318.
    [6] Goodwin T,Huang L.Nonviral vectors:we have come a long way[J].Adv Genet,2014,88:1-12.
    [7] Eoh J,Gu L.Biomaterials as vectors for the delivery of CRISPR-Cas9[J].Biomater Sci,2019,7(4):1240-1261.
    [8] Shin J,Lee N,Song Y,et al.Efficient CRISPR/Cas9-mediated multiplex genome editing in CHO cells via high-level sgRNA-Cas9 complex[J].Biotechnol Bioproc E,2015,20(5):825-833.
    [9] Ghassemi B,Shamsara M,Soleimani M,et al.Pipeline for the generation of gene knockout mice using dual sgRNA CRISPR/Cas9-mediated gene editing[J].Anal Biochem,2019,568:31-40.
    [10] Miller JB,Zhang SY,Kos P,et al.Non-viral CRISPR/cas gene editing in vitro and in vivo enabled by synthetic nanoparticle Co-delivery of Cas9 mRNA and sgRNA[J].Angew Chem Int Ed Engl,2017,56(4):1059-1063.
    [11] Sun WJ,Ji WY,Hall JM,et al.Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing[J].Angew Chem Int Ed Engl,2015,54(41):12029-12033.
    [12] Alsaiari SK, Patil S, Alyami M, et al. Endosomal escape and delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework[J].J Am Chem Soc,2018,140(1):143-146.
    [13] Wang QY,Yu JJ,Kadungure T,et al.ARMMs as a versatile platform for intracellular delivery of macromolecules[J].Nat Commun,2018,9(1):960.
    [14] Zuris JA,Thompson DB,Shu YL,et al.Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo[J].Nat Biotechnol,2015,33(1):73-80.
    [15] Ran FA,Cong L,Yan WX,et al.In vivo genome editing using Staphylococcus aureus Cas9[J].Nature,2015,520(7546):186-191.
    [16] Bengtsson NE, Hall JK, Odom GL, et al. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy[J].Nat Commun,2017,8:14454.
    [17] Yoon Y,Wang D,Tai PWL,et al.Streamlined ex vivo and in vivo genome editing in mouse embryos using recombinant adeno-associated viruses[J].Nat Commun,2018,9(1):412.
    [18] Ehrke-Schulz E,Schiwon M,Leitner T,et al.CRISPR/Cas9 delivery with one single adenoviral vector devoid of all viral genes[J].Sci Rep,2017,7(1):17113.
    [19] Jin YH,Joo H,Lee K,et al.Streamlined procedure for gene knockouts using all-in-one adenoviral CRISPR-Cas9[J].Sci Rep,2019,9(1):277.
    [20] Holmgaard A,Alsing S,Askou AL,et al.CRISPR gene therapy of the eye:targeted knockout of Vegfa in mouse retina by lentiviral delivery[J].Methods Mol Biol,2019,1961:307-328.
    [21] Tagliafierro L,Ilich E,Moncalvo M,et al.Lentiviral vector platform for the efficient delivery of epigenome-editing tools into human induced pluripotent stem cell-derived disease models[J].J Vis Exp,2019(145).doi: 10.3791/59241.
    [22] Lu BS,Javidi-Parsijani P,Makani V,et al.Delivering SaCas9 mRNA by Lentivirus-like bionanoparticles for transient expression and efficient genome editing[J].Nucleic Acids Res,2019,47(8):e44.doi: 10.1093/nar/gkz093.
    [23] Yosef I,Manor M,Kiro R,et al.Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria[J].Proc Natl Acad Sci U S A,2015,112(23):7267-7272.
    [24] Qazi S, Miettinen HM, Wilkinson RA, et al. Programmed self-assembly of an active P22-Cas9 nanocarrier system[J].Mol Pharm,2016,13(3):1191-1196.
    [25] Li YM,Bolinger J,Yu YJ,et al.Intracellular delivery and biodistribution study of CRISPR/Cas9 ribonucleoprotein loaded bioreducible lipidoid nanoparticles[J].Biomater Sci,2019,7(2):596-606.
    [26] Cho EY,Ryu JY,Lee HAR,et al.Lecithin nano-liposomal particle as a CRISPR/Cas9 complex delivery system for treating type 2 diabetes[J].J Nanobiotechnology,2019,17(1):19.
    [27] Wang YY,Ma B,Abdeen AA,et al.Versatile redox-responsive polyplexes for the delivery of plasmid DNA,messenger RNA,and CRISPR-Cas9 genome-editing machinery[J].ACS Appl Mater Interfaces,2018,10(38):31915-31927.
    [28] Chen GJ, Ma B, Wang YY, et al. A universal GSH-responsive nanoplatform for the delivery of DNA,mRNA,and Cas9/sgRNA ribonucleoprotein[J].ACS Appl Mater Interfaces,2018,10(22):18515-18523.
    [29] Mout R,Rotello VM.Cytosolic and nuclear delivery of CRISPR/Cas9-ribonucleoprotein for gene editing using arginine functionalized gold nanoparticles[J].Bio Protoc,2017,7(20):e2586.
    [30] Lee K,Conboy M,Park HM,et al.Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair[J].Nat Biomed Eng,2017,1:889-901.
    [31] Wang P,Zhang LM,Xie Y,et al.Genome editing for cancer therapy:delivery of Cas9 protein/sgRNA plasmid via a gold nanocluster/lipid core-shell nanocarrier[J].Adv Sci(Weinh),2017,4(11):1700175.
    [32] Yue HH,Zhou XM,Cheng M,et al.Graphene oxide-mediated Cas9/sgRNA delivery for efficient genome editing[J].Nanoscale,2018,10(3):1063-1071.
    [33] Ferdosi SR,Ewaisha R,Moghadam F,et al.Multifunctional CRISPR-Cas9 with engineered immunosilenced human T cell epitopes[J].Nat Commun,2019,10(1):1842.
    [34] Hendel A,Bak RO,Clark JT,et al.Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells[J].Nat Biotechnol,2015,33(9):985-989.
    [35] Suresh B,Ramakrishna S,Kim H.Cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA for genome editing[J].Methods Mol Biol,2017,1507:81-94.
    [36] Ramakrishna S,Kwaku Dad AB,Beloor J,et al.Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA[J].Genome Res,2014,24(6):1020-1027.
    [37] Lostalé-Seijo I,Louzao I,Juanes M,et al.Peptide/Cas9 nanostructures for ribonucleoprotein cell membrane transport and gene edition[J].Chem Sci,2017,8(12):7923-7931.
    [38] Annunziato S,Kas SM,Nethe M,et al.Modeling invasive lobular breast carcinoma by CRISPR/Cas9-mediated somatic genome editing of the mammary gland[J].Genes Dev,2016,30(12):1470-1480.
    [39] Yamauchi T, Masuda T, Canver MC, et al. Genome-wide CRISPR-Cas9 screen identifies leukemia-specific dependence on a pre-mRNA metabolic pathway regulated by DCPS[J].Cancer Cell,2018,33(3):386-400.e5.
    [40] Wang XJ,Min SP,Liu HL,et al.Nf1 loss promotes Kras-driven lung adenocarcinoma and results in Psat1-mediated glutamate dependence[J].EMBO Mol Med,2019,11(6):e9856.
    [41] Ideno N,Yamaguchi H,Okumura T,et al.A pipeline for rapidly generating genetically engineered mouse models of pancreatic cancer using in vivo CRISPR-Cas9-mediated somatic recombination[J].Lab Invest,2019,99(8):1233-1244.
    [42] Lee J,Bayarsaikhan D,Arivazhagan R,et al.CRISPR/Cas9 edited sRAGE-MSCs protect neuronal death in parkinson′s disease model[J].Int J Stem Cells,2019,12(1):114-124.
    [43] Arias EB,Zheng XH,Agrawal S,et al.Whole body glucoregulation and tissue-specific glucose uptake in a novel Akt substrate of 160 kDa knockout rat model[J].PLoS One,2019,14(4):e0216236.doi: 10.1371/journal.pone.0216236.
    [44] Teng Y,Luo MQ,Yu T,et al.CRISPR/Cas9-mediated deletion of miR-146a enhances antiviral response in HIV-1 infected cells[J].Genes Immun,2019,20(4):327-337.
    [45] Gergen J,Coulon F,Creneguy A,et al.Multiplex CRISPR/Cas9 system impairs HCMV replication by excising an essential viral gene[J].PLoS One,2018,13(2):e0192602.doi: 10.1371/journal.pone.0192602.
    [46] Yuen KS,Wang ZM,Wong NM,et al.Suppression of Epstein-Barr virus DNA load in latently infected nasopharyngeal carcinoma cells by CRISPR/Cas9[J].Virus Res,2018,244:296-303.
    [47] Stephens CJ,Lauron EJ,Kashentseva E,et al.Long-term correction of hemophilia B using adenoviral delivery of CRISPR/Cas9[J].J Control Release,2019,298:128-141.
    [48] Shin JW,Kim KH,Chao MJ,et al.Permanent inactivation of Huntington′s disease mutation by personalized allele-specific CRISPR/Cas9[J].Hum Mol Genet,2016,25(20):4566-4576.
    [49] Dunbar GL,Koneru S,Kolli N,et al.Silencing of the mutant huntingtin gene through CRISPR-Cas9 improves the mitochondrial biomarkers in an in vitro model of Huntington′s disease[J].Cell Transplant,2019,28(4):460-463.
  • 期刊类型引用(3)

    1. 王露,阮永明. CRISPR/Cas9系统递送方式的发展及其在昆虫研究中的应用. 生命科学研究. 2024(03): 223-231 . 百度学术
    2. 吕丹,谭志霞,许龙,吴秀山,叶湘漓. 非病毒纳米载体递送CRISPR/Cas9的研究进展. 生命科学研究. 2023(04): 371-376 . 百度学术
    3. 化春晓,孙英杰,郭依琳,杨宇霞,孔祥东. AAV9载体在小鼠体内分布的长期研究. 医学研究杂志. 2022(11): 89-93 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  877
  • HTML全文浏览量:  17
  • PDF下载量:  1567
  • 被引次数: 7
出版历程
  • 刊出日期:  2020-02-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭