• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

近红外荧光探针用于阿尔茨海默病标志物检测的研究进展

葛亦然, 杨剑, 李玉艳, 徐云根

葛亦然, 杨剑, 李玉艳, 徐云根. 近红外荧光探针用于阿尔茨海默病标志物检测的研究进展[J]. 中国药科大学学报, 2020, 51(2): 138-151. DOI: 10.11665/j.issn.1000-5048.20200203
引用本文: 葛亦然, 杨剑, 李玉艳, 徐云根. 近红外荧光探针用于阿尔茨海默病标志物检测的研究进展[J]. 中国药科大学学报, 2020, 51(2): 138-151. DOI: 10.11665/j.issn.1000-5048.20200203
GE Yiran, YANG Jian, LI Yuyan, XU Yungen. Advances of near-infrared fluorescent probes for detection of Alzheimer′s disease[J]. Journal of China Pharmaceutical University, 2020, 51(2): 138-151. DOI: 10.11665/j.issn.1000-5048.20200203
Citation: GE Yiran, YANG Jian, LI Yuyan, XU Yungen. Advances of near-infrared fluorescent probes for detection of Alzheimer′s disease[J]. Journal of China Pharmaceutical University, 2020, 51(2): 138-151. DOI: 10.11665/j.issn.1000-5048.20200203

近红外荧光探针用于阿尔茨海默病标志物检测的研究进展

基金项目: 博士后科学基金第62批面上资助项目(No.1600010008);中国药科大学“双一流”创新团队项目资助(No.CPU2018GY20)

Advances of near-infrared fluorescent probes for detection of Alzheimer′s disease

  • 摘要: 阿尔茨海默病(Alzheimer′s disease,AD)是一种多发于老年人的神经退行性疾病,目前尚无有效治疗方法。随着近年来多个AD治疗药物在临床Ⅲ期实验中遭遇失败,全世界逐渐把目光投向AD早期诊断技术的开发。近红外荧光(near-infrared fluorescence,NIRF)分子探针技术在AD大脑生物标志物检测技术开发中具有独特的优势,是当下AD早期诊断技术研究的重要领域。本文对用于标记β-淀粉样蛋白、Tau蛋白及活性氧簇的近红外荧光小分子探针的研究进展进行了全面的总结分析,包括各类近红外分子探针的化学结构、光学性质、体外以及体内实验,并对AD的诊断发展提出了新的方向。相信这些新的思路对近红外小分子探针在AD领域的研究有着重要的意义。
    Abstract: Alzheimer′s disease(AD)is a chronic neurodegenerative diseasecommonly seen in the elderlys. Several therapeutic drugs have failed in phase III clinical trials in recent years and there have been no efficient treatment for AD currently. Thus, there has been an urgent need for the effective methods of AD diagnosis at early stage. Developingnear-infrared fluorescentprobes for AD hallmarks detection has been a promising research field. In this review, we summarized a variety of near-infrared fluorescence(NIRF)probes reported in the past decade, which capable of detecting β-amyloid, Tau protein and reactive oxygen species, including their chemical strucutres、optical properties, in vitro and in vivo studies. Furthermore, we alsoraised some new directions for AD diagnosing. We believe that these new directions raised herein will benefit the future development of NIRF probes in the field of AD research.
  • [1] Brookmeyer R,Johnson E,Zieglergraham K,et al.Forecasting the global burden of Alzheimer′s disease[J].Alzheimers Dement,2007,3(3):186-191.
    [2] Ferri CP,Prince M,Brayne C,et al.Global prevalence of dementia: a Delphi consensus study[J].Lancet,2005,366:2112-2117.
    [3] Mayeux R.Epidemiology of neurodegeneration[J].Annu Rev Neurosci,2003,26(1):81.
    [4] Tabert MH,Liu X,Doty RL,et al.A 10-item smell identification scale related to risk for Alzheimer′s disease[J].Ann Neurol,2005,58(1):155-160.
    [5] Kung,Hank F.The β-amyloid hypothesis in Alzheimer′s disease:seeing Is believing[J].ACS Med Chem Lett,2012,3(4):265-267.
    [6] StaderiniM,María AM,Bolognesi ML,et al.Imaging of β-amyloid plaques by near infrared fluorescent tracers:a new frontier for chemical neuroscience[J].Chem Soc Rev,2015,44(7):1807-1819.
    [7] Mckhann G,Drachman D,Folstein M,et al.Clinical diagnosis of Alzheimer′s disease[J].Neurology,1984,34(7):939-944.
    [8] Tong H, Lou K, Wang W. Near-infrared fluorescent probes for imaging of amyloid plaques in Alzheimer′s disease[J].Acta Pharm Sin B,2015,5(1):25-33.
    [9] Golde TE,Bacskai BJ.Bringing amyloid into focus[J].Nat Biotechnol,2005,23(5):552.
    [10] Cui,Mengchao.Past and recent progress of molecular imaging probes for β-amyloid plaques in the brain[J].Curr Med Chem,2014,21(1):82-112.
    [11] Bertoncini CW,Celej MS.Small molecule fluorescent probes for the detection of amyloid self-assembly in vitro and in vivo[J].Curr Protein Pept Sc,2011,12(3):206-220.
    [12] Raymond SB,Kumar ATN,Boas DA,et al.Optimal parameters for near infrared fluorescence imaging of amyloid plaques in Alzheimer′s disease mouse models[J].Phys Med Biol,2009,54(20):6201-6216.
    [13] Licha K,Olbrich C.Optical imaging in drug discovery and diagnostic applications[J].Adv Drug Deliver Rev,2005,57(8):1087-1108.
    [14] Hardy J,Selkoe DJ.The amyloid hypothesis of Alzheimer′s disease:progress and problems on the road to therapeutics[J].Science,2002,297:353-356.
    [15] Mclean CA,Cherny RA,Fraser FW,et al.Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer′s disease[J].Ann Neurol,2010,46(6):860-866.
    [16] Klein WL,Krafft GA,Finch CE.Targeting small β oligomers:the solution to an Alzheimer′s disease conundrum[J]?Trends Neurosci,2001,24(4):219-224.
    [17] Nesterov EE,Skoch J,Hyman BT,et al.In vivo optical imaging of amyloid aggregates in brain:design offluorescent markers[J].Angew Chem Int Ed Engl,2005,44:5452-5456.
    [18] Raymond SB,Skoch J,Hills ID,et al.Smart optical probes for near-infrared fluorescence imaging of Alzheimer′s disease pathology[J].Eur J Nucl Med Mol,2008,35(1):93-98.
    [19] Hintersteiner M,Enz A, Frey P,et al.In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe[J].Nat Biotechnol,2005,23(5):577-583.
    [20] Ran C,Xu X,Raymond SB,et al.Design,synthesis,and testing of difluoroboron-derivatized curcumins as near-infrared probes for in vivo detection of amyloid-β deposits[J].J Am Chem Soc,2009,131(42):15257-15261.
    [21] Yang F,Lim GP,Begum AN,et al.Curcumin inhibits formation of amyloid β oligomers and fibrils,binds plaques,and reduces amyloid in vivo[J].J Biol Chem,2005,280(7):5892-5901.
    [22] Ran C, Moore A. Spectral unmixing imaging of wavelength-responsive fluorescent probes:an application for the real-time report of amyloid beta species in Alzheimer′s disease[J].Mol Imagine Biol,2012,14(3):293-300.
    [23] Zhang X,Tian Y,Li Z,et al.Design and synthesis of curcumin analogues for in vivo fluorescence imaging and inhibiting copper-induced cross-linking of amyloid beta species in Alzheimer′s disease[J].J Am Chem Soc,2013,135(44):16397-16409.
    [24] Li Y,Yang J,Liu H,et al.Tuning stereo-hindrance of curcumin scaffold for selective imaging of soluble forms of amyloid beta species[J].Chem Sci,2017:8(11):7710-7717.doi: 10.1039.C7SC02050C.
    [25] Ono M,Ishikawa M,Kimura H,et al.Development of dual functional SPECT/fluorescent probes for imaging cerebral β-amyloid plaques[J].Bioorg Med Chem Lett,2010,20(13):3885-3888.
    [26] Ono M,Watanabe H,Kimura H,et al.BODIPY-based molecular probe for imaging of cerebral β-amyloid plaques[J].ACS ChemNeurosci,2012,3(4):319-324.
    [27] Watanabe H,Ono M,Matsumura K,et al.Molecular imaging of β-amyloid plaques with near-infrared boron dipyrromethane(BODIPY)-based fluorescent probes[J].Mol Imagine,2013,12(5):338-347.
    [28] Okamura N,Mori M,Furumoto S,et al.In vivo detection of amyloid plaques in the mouse brain using the near-infrared fluorescence probe THK-265[J].J Alzheimers Dis,2011,23(1):37-48.
    [29] Schmidt A,Pahnke J.Efficient near-infrared in vivo imaging of amyoid-β deposits in Alzheimer′s disease mouse models[J].J Alzheimers Dis,2012,30:651-664.
    [30] Cui M,Ono M,Watanabe H,et al.Smart near-infrared fluorescence probes with donor-acceptor structure for in vivo detection of β-amyloid deposits[J].J Am Chem Soc,2014,136(9):3388-3394.
    [31] Fu H,Cui M,Tu P,et al.Evaluation of molecules based on the electron donor-acceptor architecture as near-infrared β-amyloidal-targeting probes[J].Chem Commun,2014,50(80):11875-11878.
    [32] Fu H,Tu P,Zhao L,et al.Amyloid-β deposits target efficient near-infrared fluorescent probes:synthesis,in vitro evaluation and in vivo imaging[J].Anal Chem,2016,88(3):1944.
    [33] Hualong F,Mengchao C,Liu Z,et al.Highly sensitive near-infrared fluorophores for in vivo detection of amyloid-β plaques in Alzheimer′s disease[J].J Med Chem,2015,58(17):6972.
    [34] Ni W,Kou X,Yang Z,et al.Tailoring longitudinal surface plasmon wavelengths,scattering and absorption cross sections of gold nanorods[J].ACS Nano,2008,2:677-686.
    [35] Eghtedari M,Oraevsky A,Copland JA,et al.High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system[J].Nano Lett,2007,7:1914-1918.
    [36] Meng L,Yijia G,Andong Z,et al.Using multifunctional peptide conjugated Au nanorods for monitoring β-amyloid aggregation and chemo-photothermal treatment of Alzheimer′s disease[J].Theranostics,2017,7(12):2996-3006.
    [37] Li YH,Xu D,Chan HN,et al.Bioimaging:dual-modal NIR-fluorophore conjugated magnetic nanoparticle for imaging amyloid-β species in vivo[J].Small,2018,14(28):1800901.
    [38] Li Y, Xu D, Ho SL, et al. A theranostic agent for in vivo near-infrared imaging of β-amyloid species and inhibition of β-amyloid aggregation[J].Biomaterials,2016,94:84-92.
    [39] Pascal D,Ye FF,Du ZY,et al.Design and synthesis of new theranostic agents for near-infrared imaging of β-amyloid plaques and inhibition of β-amyloid aggregation in Alzheimer′s disease[J].Dyes Pigments,2017,147:130-140.
    [40] Zhu JY,Zhou LF,Li YK,et al.In vivo near-infrared fluorescence imaging of amyloid-β plaques with a dicyanoisophorone-based probe[J].Anal Chim Acta,2017,961:112-118.
    [41] Rajasekhar K,Narayanaswamy N,Murugan NA,et al.Aβ plaque-selective NIR fluorescence probe to differentiate Alzheimer′s disease from tauopathies[J].Biosens Bioelectron,2017,98:54-61.
    [42] Lee M,Kim M,Tikum AF,et al.A near-infrared fluorescent probe for amyloid-β aggregates[J].Dyes Pigments,2019,162:97-103.
    [43] Iqbal K,Alonso AC,Chen S,et al.Tau pathology in Alzheimer disease and other tauopathies[J].BBA-Biomembranes,2005,1739(2):198-210.
    [44] Grundke-Iqbal I,Iqbal K,Tung YC,et al.Abnormal phosphorylation of the microtubule -associated protein tau(tau)in Alzheimer cytoskeletal pathology[J].Proc Natl Acad Sci U S A,1986,83(13):4913-4917.
    [45] Grundkeiqbal I,Iqbal K,Quinlan M,et al.Microtubule-associated protein tau.A component of Alzheimer paired helical filaments[J].J Biol Chem,1986,261(13):6084-6089.
    [46] Shao P.Alzheimer′s disease imaging with a novel Tau targeted near infrared ratiometric probe[J].Am J Nucl Med Mol Imaging,2013,3(2):102-117.
    [47] Park KS,Seo Y,Kim MK,et al.A curcumin-based molecular probe for near-infrared fluorescence imaging of tau fibrils in Alzheimer′s disease[J].Org Biomol Chem,2015,13(46):11194-11199.
    [48] Peter V,Hye-Ri Kim,Jinho S,et al.Rational design of in vivo Tau tangle-selective near-infrared fluorophores:expanding the BODIPY universe[J].J Am Chem Soc,2017,139(38):13393-13403.
    [49] Maruyama M,Shimada H,Suhara T,et al.Imaging of Tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls[J].Neuron,2013,79(6):1094-1108.
    [50] Butterfield DA,Lange MLB,Sultana R.Involvements of the lipid peroxidation product,HNE,in the pathogenesis and progression of Alzheimer′s disease[J].Biochim Biophys Acta,2010,1801(8):924-929.
    [51] Cheignon C,Tomas M,Bonnefontrousselot D,et al.Oxidative stress and the amyloid beta peptide in Alzheimer′s disease[J].Redox Biol,2018,14:450-464.
    [52] Tönnies,Eric,Trushina E.Oxidative stress,synaptic dysfunction,and Alzheimer′s disease[J].J Alzheimers Dis,2017,57(4):1105-1121.
    [53] Butterfield DA,Lauderback CM.Lipid peroxidation and protein oxidation in Alzheimer′s disease brain:potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress[J].Free Radical Bio Med,2002,32(11):1050-1060.
    [54] Yang J,Yang J,Liang SH,et al.Imaging hydrogen peroxide in Alzheimer′s disease via cascade signal amplification[J].Sci Rep,2016,6(7):442-442.
    [55] Yang J,Zhang X,Yuan P,et al.Oxalate-curcumin-based probe for micro-and macroimaging of reactive oxygen species in Alzheimer′s disease[J].Proc Natl Acad Sci U S A,2017:201706248.
  • 期刊类型引用(1)

    1. 刘婷婷,雷华,董红艳,王婷婷,王学武. 葛根芩连汤对脂多糖诱导的急性肺损伤大鼠MAPK/NF-κB信号通路的调节及肺组织保护作用. 西部医学. 2022(01): 40-44+50 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  750
  • HTML全文浏览量:  15
  • PDF下载量:  1380
  • 被引次数: 3
出版历程
  • 刊出日期:  2020-04-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭