• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

三维细胞模型在肿瘤研究中的应用

刘佳敏, 贾晓青, 狄斌

刘佳敏, 贾晓青, 狄斌. 三维细胞模型在肿瘤研究中的应用[J]. 中国药科大学学报, 2020, 51(2): 152-160. DOI: 10.11665/j.issn.1000-5048.20200204
引用本文: 刘佳敏, 贾晓青, 狄斌. 三维细胞模型在肿瘤研究中的应用[J]. 中国药科大学学报, 2020, 51(2): 152-160. DOI: 10.11665/j.issn.1000-5048.20200204
LIU Jiamin, JIA Xiaoqing, DI Bin. Application of three-dimensional cell model in tumor research[J]. Journal of China Pharmaceutical University, 2020, 51(2): 152-160. DOI: 10.11665/j.issn.1000-5048.20200204
Citation: LIU Jiamin, JIA Xiaoqing, DI Bin. Application of three-dimensional cell model in tumor research[J]. Journal of China Pharmaceutical University, 2020, 51(2): 152-160. DOI: 10.11665/j.issn.1000-5048.20200204

三维细胞模型在肿瘤研究中的应用

Application of three-dimensional cell model in tumor research

  • 摘要: 三维细胞模型借助特殊材料或载体在体外培养不同种类的细胞,使细胞在三维环境中生长、迁移和分化。三维细胞模型为细胞提供接近体内生存的体外环境,使细胞的基因表达、信号传递更具生理学相关性。本文从三维细胞模型的概念与分类入手,综述了近几年三维细胞模型在肿瘤微环境、肿瘤转移与抗肿瘤药物研发的应用与进展。基于三维细胞模型目前存在的不足,对其在肿瘤治疗中的应用提出了设想与展望。
    Abstract: The three-dimensional cell model cultures different types of cells in vitro. By means of special materials or carriers, the cells can grow, migrate and differentiate in a three-dimensional environment. The three-dimensional cell model provides the cells with an in vitro environment that is close to in vivo, making the gene expression and signal exchange of the cells more physiologically relevant. This paper starts with the concept and classification of three-dimensional cell model, then summarizes the applications and progresses of three-dimensional cell model in tumor micro-environment, cancer metastasis and anti-tumor drug development in recent years. Based on the current shortcomings of the three-dimensional cell model, this paper presents the assumptions and prospects for the application of three-dimensional cell model in tumor therapy.
  • [1] Amelian A,Wasilewska K,Megias D,et al.Application of standard cell cultures and 3D in vitro tissue models as an effective tool in drug design and development[J].Pharmacol Rep,2017,69(5):861-870.
    [2] Lovitt CJ,Shelper TB,Avery VM.Cancer drug discovery:recent innovative approaches to tumor modeling[J].Expert Opin Drug Discov,2016,11(9):885-894.
    [3] Hutchinson L, Kirk R. High drug attrition rates: where are we going wrong[J]?Nat Rev Clin Oncol,2011,8(4):189-190.
    [4] Lelièvre SA,Kwok T,Chittiboyina S.Architecture in 3D cell culture:an essential feature for in vitro toxicology[J].Toxicol In Vitro,2017,45(Pt 3):287-295.
    [5] Weiswald LB,Bellet D,Dangles-Marie V.Spherical cancer models in tumor biology[J].Neoplasia,2015,17(1):1-15.
    [6] Kapaczyńska M,Kolenda T,Przybya W,et al.2D and 3D cell cultures—a comparison of different types of cancer cell cultures[J].Arch Med Sci,2018,14(4):910-919.
    [7] Knight E,Przyborski S.Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro[J].J Anat,2015,227(6):746-756.
    [8] Souza AG,Silva IBB,Campos-Fernandez E,et al.Comparative assay of 2D and 3D cell culture models:proliferation,gene expression and anticancer drug response[J].Curr Pharm Des,2018,24(15):1689-1694.
    [9] Antoni D,Burckel H,Josset E,et al.Three-dimensional cell culture:a breakthrough in vivo[J].Int J Mol Sci,2015,16(3):5517-5527.
    [10] Li ZW, Araoka T, Wu J, et al. 3D culture supports long-term expansion of mouse and human nephrogenic progenitors[J].Cell Stem Cell,2016,19(4):516-529.
    [11] Ham SL,Joshi R,Thakuri PS,et al.Liquid-based three-dimensional tumor models for cancer research and drug discovery[J].Exp Biol Med(Maywood),2016,241(9):939-954.
    [12] Rijal G,Li WM.3D scaffolds in breast cancer research[J].Biomaterials,2016,81:135-156.
    [13] Rijal G,Bathula C,Li WM.Application of synthetic polymeric scaffolds in breast cancer 3D tissue cultures and animal tumor models[J].Int J Biomater,2017,2017:8074890.
    [14] Veelken C,Bakker GJ,Drell D,et al.Single cell-based automated quantification of therapy responses of invasive cancer spheroids in organotypic 3D culture[J].Methods,2017,128:139-149.
    [15] Li YZ,Rogoff HA,Keates S,et al.Suppression of cancer relapse and metastasis by inhibiting cancer stemness[J].Proc Natl Acad Sci U S A,2015,112(6):1839-1844.
    [16] Ishiguro T,Ohata H,Sato A,et al.Tumor-derived spheroids:relevance to cancer stem cells and clinical applications[J].Cancer Sci,2017,108(3):283-289.
    [17] Ham SL,Joshi R,Thakuri PS,et al.Liquid-based three-dimensional tumor models for cancer research and drug discovery[J].Exp Biol Med(Maywood),2016,241(9):939-954.
    [18] Thoma CR,Zimmermann M,Agarkova I,et al.3D cell culture systems modeling tumor growth determinants in cancer target discovery[J].Adv Drug Deliv Rev,2014,69/70:29-41.
    [19] Mehta G,Hsiao AY,Ingram M,et al.Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy[J].J Control Release,2012,164(2):192-204.
    [20] Estrada MF,Rebelo SP,Davies EJ,et al.Modelling the tumour microenvironment in long-term microencapsulated 3D co-cultures recapitulates phenotypic features of disease progression[J].Biomaterials,2016,78:50-61.
    [21] Kaukonen R,Jacquemet G,Hamidi H,et al.Cell-derived matrices for studying cell proliferation and directional migration in a complex 3D microenvironment[J].Nat Protoc,2017,12(11):2376-2390.
    [22] Lazzari G,Nicolas V,Matsusaki M,et al.Multicellular spheroid based on a triple co-culture:a novel 3D model to mimic pancreatic tumor complexity[J].Acta Biomater,2018,78:296-307.
    [23] Burgstaller G,Sengupta A,Vierkotten S,et al.Distinct niches within the extracellular matrix dictate fibroblast function in(cell free)3D lung tissue cultures[J].Am J Physiol Lung Cell Mol Physiol,2018,314(5):L708-L723.
    [24] Chevrier S,Levine JH,Zanotelli VRT,et al.An immune atlas of clear cell renal cell carcinoma[J].Cell,2017,169(4):736-749.e18.
    [25] Munn DH,Bronte V.Immune suppressive mechanisms in the tumor microenvironment[J].Curr Opin Immunol,2016,39:1-6.
    [26] Osswald A,Hedrich V,Sommergruber W.3D-3 tumor models in drug discovery for analysis of immune cell infiltration[J].Methods Mol Biol,2019,1953:151-162.
    [27] Balachander GM,Balaji SA,Rangarajan A,et al.Enhanced metastatic potential in a 3D tissue scaffold toward a comprehensive in vitro model for breast cancer metastasis[J].ACS Appl Mater Interfaces,2015,7(50):27810-27822.
    [28] Malandrino A,Kamm RD,Moeendarbary E.In vitro modeling of mechanics in cancer metastasis[J].ACS Biomater Sci Eng,2018,4(2):294-301.
    [29] Chitty JL,Filipe EC,Lucas MC,et al.Recent advances in understanding the complexities of metastasis[J].F1000Res,2018,7:1169.doi: 10.12688/f1000research.15064.2.
    [30] Balachander GM,Balaji SA,Rangarajan A,et al.Enhanced metastatic potential in a 3D tissue scaffold toward a comprehensive in vitro model for breast cancer metastasis[J].ACS Appl Mater Interfaces,2015,7(50):27810-27822.
    [31] Janani G,Pillai MM,Selvakumar R,et al.An in vitro 3D model using collagen coated gelatin nanofibers for studying breast cancer metastasis[J].Biofabrication,2017,9(1):015016.
    [32] Toh YC,Raja A,Yu H,et al.A 3D microfluidic model to recapitulate cancer cell migration and invasion[J].Bioengineering(Basel),2018,5(2):E29.
    [33] Romero-López M,Trinh AL,Sobrino A,et al.Recapitulating the human tumor microenvironment:colon tumor-derived extracellular matrix promotes angiogenesis and tumor cell growth[J].Biomaterials,2017,116:118-129.
    [34] Velez DO,Tsui B,Goshia T,et al.3D collagen architecture induces a conserved migratory and transcriptional response linked to vasculogenic mimicry[J].Nat Commun,2017,8(1):1651.
    [35] Leight JL,Tokuda EY,Jones CE,et al.Multifunctional bioscaffolds for 3D culture of melanoma cells reveal increased MMP activity and migration with BRAF kinase inhibition[J].Proc Natl Acad Sci U S A,2015,112(17):5366-5371.
    [36] Fang Y,Eglen RM.Three-dimensional cell cultures in drug discovery and development[J].SLAS Discov,2017,22(5):456-472.
    [37] Verjans ET,Doijen J,Luyten W,et al.Three-dimensional cell culture models for anticancer drug screening:worth the effort[J]?J Cell Physiol,2018,233(4):2993-3003.
    [38] Mosaad E,Chambers K,Futrega K,et al.Using high throughput microtissue culture to study the difference in prostate cancer cell behavior and drug response in 2D and 3D co-cultures[J].BMC Cancer,2018,18(1):592.
    [39] Rijal G,Li WM.A versatile 3D tissue matrix scaffold system for tumor modeling and drug screening[J].Sci Adv,2017,3(9):e1700764.doi: 10.1126/sciadv.1700764.
    [40] Yan XJ,Zhou L,Wu ZZ,et al.High throughput scaffold-based 3D micro-tumor array for efficient drug screening and chemosensitivity testing[J].Biomaterials,2019,198:167-179.
    [41] Lu MX,Henry CE,Lai HW,et al.A new 3D organotypic model of ovarian cancer to help evaluate the antimetastatic activity of RAPTA-C conjugated micelles[J].Biomater Sci,2019,7(4):1652-1660.
    [42] Ma JY,Li N,Wang YC,et al.Engineered 3D tumour model for study of glioblastoma aggressiveness and drug evaluation on a detachably assembled microfluidic device[J].Biomed Microdevices,2018,20(3):80.
    [43] Liu QX,Zhang ZJ,Liu YP,et al.Cancer cells growing on perfused 3D collagen model produced higher reactive oxygen species level and were more resistant to cisplatin compared to the 2D model[J].J Appl Biomater Funct Mater,2018,16(3):144-150.
    [44] Imamura Y,Mukohara T,Shimono Y,et al.Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer[J].Oncol Rep,2015,33(4):1837-1843.
    [45] Li JQ,Wu X,Gan L,et al.Hypoxia induces universal but differential drug resistance and impairs anticancer mechanisms of 5-fluorouracil in hepatoma cells[J].Acta Pharmacol Sin,2017,38(12):1642-1654.
    [46] Guo LL,Xu YR,Zhang L,et al.Advances in the application of three-dimensional tumor spheroids model in the mechanism study of drug resistance[J].J China Pharm Univ(中国药科大学学报),2018,49(5):521-527.
    [47] Huang YY,Wang SQ,Kessel S,et al.Characterizing 3D morphology of multicellular tumor spheroids using optical coherence tomography(Conference Presentation)[C].SPIE BiOS,Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXI,100530T(2017-04-19);https://doi.org/10.1117/12.2254920.
    [48] Vinci M,Gowan S,Boxall F,et al.Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation[J].BMC Biol,2012,10:29.
    [49] Ivascu A,Kubbies M.Diversity of cell-mediated adhesions in breast cancer spheroids[J].Int J Oncol,2007,31(6):1403-1413.
    [50] Schwartz AD,Barney LE,Jansen LE,et al.A biomaterial screening approach reveals microenvironmental mechanisms of drug resistance[J].Integr Biol(Camb),2017,9(12):912-924.
    [51] Breslin S,O′Driscoll L.The relevance of using 3D cell cultures,in addition to 2D monolayer cultures,when evaluating breast cancer drug sensitivity and resistance[J].Oncotarget,2016,7(29):45745-45756.doi: 10.18632/oncotarget.9935.
    [52] Riedl A,Schlederer M,Pudelko K,et al.Comparison of cancer cells in 2D vs 3D culture reveals differences in AKT-mTOR-S6K signaling and drug responses[J].J Cell Sci,2017,130(1):203-218.
    [53] Lu M,Zhou F,Hao K,et al.Alternation of adriamycin penetration kinetics in MCF-7 cells from 2D to 3D culture based on P-gp expression through the Chk2/p53/NF-κB pathway[J].Biochem Pharmacol,2015,93(2):210-220.
    [54] Gomez-Roman N,Stevenson K,Gilmour L,et al.A novel 3D human glioblastoma cell culture system for modeling drug and radiation responses[J].Neuro-oncology,2017,19(2):229-241.
    [55] Qin Y,Roszik J,Chattopadhyay C,et al.Hypoxia-driven mechanism of vemurafenib resistance in melanoma[J].Mol Cancer Ther,2016,15(10):2442-2454.
    [56] Song Y, Kim JS, Choi EK, et al. TGF-β-independent CTGF induction regulates cell adhesion mediated drug resistance by increasing collagen I in HCC[J].Oncotarget,2017,8(13):21650-21662.
    [57] Halfter K,Hoffmann O,Ditsch N,et al.Testing chemotherapy efficacy in HER2 negative breast cancer using patient-derived spheroids[J].J Transl Med,2016,14(1):112.
    [58] Ando Y,Siegler EL,Ta HP,et al.Hypoxia:evaluating CAR-T cell therapy in a hypoxic 3D tumor model(adv.Healthcare mater.5/2019)[J].Adv Healthcare Mater,2019,8(5):1970015.
    [59] Lee SWL,Adriani G,Ceccarello E,et al.Characterizing the role of monocytes in T cell cancer immunotherapy using a 3D microfluidic model[J].Front Immunol,2018,9:416.
  • 期刊类型引用(1)

    1. 樊文香,张锦璐,徐驰. α7烟碱型乙酰胆碱受体在中枢神经系统性疾病中作用的研究进展. 中国临床药理学与治疗学. 2021(09): 1065-1072 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  599
  • HTML全文浏览量:  0
  • PDF下载量:  1170
  • 被引次数: 2
出版历程
  • 刊出日期:  2020-04-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭