• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

抗结核药物的研究进展

韦媛媛, 杨帆, 汤杰, 于丽芳

韦媛媛, 杨帆, 汤杰, 于丽芳. 抗结核药物的研究进展[J]. 中国药科大学学报, 2020, 51(2): 231-239. DOI: 10.11665/j.issn.1000-5048.20200215
引用本文: 韦媛媛, 杨帆, 汤杰, 于丽芳. 抗结核药物的研究进展[J]. 中国药科大学学报, 2020, 51(2): 231-239. DOI: 10.11665/j.issn.1000-5048.20200215
WEI Yuanyuan, YANG Fan, TANG Jie, YU Lifang. Advances in the research of anti-tuberculosis drugs[J]. Journal of China Pharmaceutical University, 2020, 51(2): 231-239. DOI: 10.11665/j.issn.1000-5048.20200215
Citation: WEI Yuanyuan, YANG Fan, TANG Jie, YU Lifang. Advances in the research of anti-tuberculosis drugs[J]. Journal of China Pharmaceutical University, 2020, 51(2): 231-239. DOI: 10.11665/j.issn.1000-5048.20200215

抗结核药物的研究进展

基金项目: 国家自然科学基金资助项目(No.21778019)

Advances in the research of anti-tuberculosis drugs

  • 摘要: 随着结核病耐药频率不断升高,结核病治疗面临严峻的挑战,因此,研发新型抗结核药物显得尤为重要。在过去十年中,抗结核药物的研发取得了重要进展。本文将对近年来被批准用于临床和正在进行临床试验的新化学实体按靶点进行分类,并综述其作用机制、体内外药理活性、药代动力学性质以及临床研究结果。对抗结核药物的研发进行了展望,以期对结核病药物研发提供参考。
    Abstract: Tuberculosis(TB)treatment is currently falling into a gigantic dilemma-particularly with the increased frequentcy TB resistance, so the development of new anti-tuberculosis drugs is imperative and has received extensive attention. In the past decade, significant progress has been made in this field. Bedaquiline, delamanid and pretomanid have been approved for the clinical use. In addition, many other drugs and combination protocols are undergoing clinical trials. This review focuses on the new chemical entities for TB treatments from multiple perspectives, including the mechanisms of action, in vitro and in vivo pharmacological activities, pharmacokinetic properties and clinical results. Anti-tuberculosis drug research is prospected to provide a reference for drug deve-lopment.
  • [1] Geneva: World Health Organization. Global tuberculosisreport 2018[EB/OL].(2018-09-18)[2019-09-11] .https://www.who.int/tb/publications/global_report/en/.
    [2] Zumla A,Nahid P,Cole ST.Advances in the development of new tuberculosis drugs and treatment regimens[J].Nat Rev Drug Discov,2013,12(5):388-404.
    [3] Falzon D,Jaramillo E,Schunemann HJ,et al.WHO guidelines for the programmatic management of drug-resistant tuberculosis:2011 update[J].Eur Respir J,2011,38(3):516-528.
    [4] Brennan PJ.Structure,function,and biogenesis of the cell wall of Mycobacterium tuberculosis[J].Tuberculosis,2003,83(1/2/3):91-97.
    [5] Favrot L,Ronning DR.Targeting the mycobacterial envelope for tuberculosis drug development[J].Expert Rev Anti Infect Ther,2012,10(9):1023-1036.
    [6] Horsburgh CR,D.M,Barry CE,et al.Treatment of tuberculosis[J].N Engl J Med,2015,373(22):2149-2160.
    [7] Matsumoto M,Hashizume H,Tomishige T,et al.OPC-67683,a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice[J].PLoS Med,2006,3(11):2131-2144.
    [8] Fujiwara M, Kawasaki M, Hariguchi N, et al. Mechanisms of resistance to delamanid,a drug for Mycobacterium tuberculosis[J].Tuberculosis,2018,108:186-194.
    [9] Gler MT,Skripconoka V,Sanchez-Garavito E,et al.Delamanid for multidrug-resistant pulmonary tuberculosis[J].N Engl J Med,2012,366(23):2151-2160.
    [10] Liu Y,Matsumoto M,Ishida H,et al.Delamanid:from discovery to its use for pulmonary multidrug-resistant tuberculosis(MDR-TB)[J].Tuberculosis,2018,111:20-30.
    [11] Stover CK,Warrener P,Vandevanter DR,et al.A small-moleculenitroimidazopyran drug candidate for the treatment of tuberculosis[J].Nature,2000,405(6789):962-966.
    [12] Singh R,Manjunatha U,Helena IMB,et al.PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release[J].Science,2008,322(5906):1392-1395.
    [13] Lenaerts AJ,Veronica G,Marietta KS,et al.Preclinical testing of the nitroimidazopyran PA-824 for activity against Mycobacterium tuberculosis in a series of in vitro and in vivo models[J].Antimicrob Agents Chemother,2005,49(6):2294-2301.
    [14] Sandeep T, Nuermberger E, Yoshimatsu T, et al. Bactericidal activity of the nitroimidazopyran PA-824 in a murine model of tuberculosis[J].Antimicrob Agents Chemother,2005,49(6):2289-2293.
    [15] Diacon AH, Rodney D, Florian GB, et al. 14-day bactericidal activity of PA-824,bedaquiline,pyrazinamide,and moxifloxacin combinations:a randomised trial[J].Lancet,2012,380(9846):986-993.
    [16] Nuermberger E,Tyagi S,Tasneen R,et al.Powerful bactericidal and sterilizing activity of a regimen containing PA-824,moxifloxacin,and pyrazinamide in a murine model of tuberculosis[J].Antimicrob Agents Chemother,2008,52(4):1522-1524.
    [17] Nuermberger E,Rosenthal I,Tyagi S,et al.Combination chemotherapy with the nitroimidazopyran PA-824 and first-line drugs in a murine model of tuberculosis[J].Antimicrob Agents Chemother,2006,50(8):2621-2625.
    [18] Tasneen R, Tyagi S, Williams K, et al. Enhanced bactericidal activity of rifampin and/or pyrazinamide when combined with PA-824 in a murine model of tuberculosis[J].Antimicrob Agents Chemother,2008,52(10):3664-3668.
    [19] Sacksteder KA,Protopopova M,Barry CE,et al.Discovery and development of SQ109:a new antitubercular drug with a novel mechanism of action[J].Future Microbiol,2012,7(7):823-837.
    [20] Chen P.Synergistic interactions of SQ109,a new ethylene diamine,with front-line antitubercular drugs in vitro[J].J Antimicrob Chemoth,2006,58(2):332-337.
    [21] Reddy VM, Einck L, Andries K,et al. In vitro interactions between new antitubercular drug candidates SQ109 and TMC207[J].Antimicrob Agents Chemother,2010,54(7):2840-2846.
    [22] Reddy VM,Dubuisson T,Einck L,et al.SQ109 and PNU-100480 interact to kill Mycobacterium tuberculosis in vitro[J].J Antimicrob Chemoth,2012,67(5):1163-1166.
    [23] Piton J,Vocat A,Lupien A,et al.Structure-based drug design and characterization of sulfonyl-piperazine benzothiazinone inhibitors of DprE1 from Mycobacterium tuberculosis[J].Antimicrob Agents Chemother,2018,62(10):e00681-18.
    [24] Brecik M,Centárová I,Mukherjee R,et al.DprE1 is a vulnerable tuberculosis drug target due to its cell wall localization[J].ACS Chem Biol,2015,10(7):1631-1636.
    [25] Makarov V,Manina G,Mikusova K,et al.Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis[J].Science,2009,324(5928):801-804.
    [26] Lechartier B,Hartkoorn RC,Cole ST.In vitro combination studies of benzothiazinone lead compound BTZ043 against Mycobacterium tuberculosis[J].Antimicrob Agents Chemother,2012,56(11):5790-5793.
    [27] Makarov V,Lechartier B,Zhang M,et al.Towards a new combination therapy for tuberculosis with next generation benzothiazinones[J].Embo Mol Med,2014,6(3):372-383.
    [28] Makarov V,Neres J,Hartkoorn RC,et al.The 8-pyrrole-benzothiazinones are noncovalent inhibitors of DprE1 from Mycobacterium tuberculosis[J].Antimicrob Agents Chemother,2015,59(8):4446-4452.
    [29] Lechartier B,Cole ST.Mode of action of clofazimine and combination therapy with benzothiazinones against Mycobacterium tuberculosis[J].Antimicrob Agents Chemother,2015,59(8):4457-4463.
    [30] Lupien A,Vocat A,Foo CS,et al.Optimized background regimen for treatment of active tuberculosis with the next-generation benzothiazinone Macozinone(PBTZ169)[J].Antimicrob Agents Chemother,2018,62(11):e00840-18.
    [31] Working Group on New TB Drugs[EB/OL].[2019-09-11] .https://www.newtbdrugs.org/pipeline/clinical.
    [32] Chatterji M,Shandil R,Manjunatha MR,et al.1,4-azaindole,a potential drug candidate for treatment of tuberculosis[J].Antimicrob Agents Chemother,2014,58(9):5325-5331.
    [33] Lamprecht DA,Finin PM,Rahman MA,et al.Turning the respi-ratory flexibility of Mycobacterium tuberculosis against itself[J].Nat Commun,2016,7(1):12393.
    [34] Kalia NP,Hasenoehrl EJ,Ab Rahman NB,et al.Exploiting the synthetic lethality between terminal respiratory oxidases to kill Mycobacterium tuberculosis and clear host infection[J].PNAS,2017,114(28):7426-7431.
    [35] Guillemont J,Meyer C,Poncelet A,et al.Diarylquinolines,synthesis pathways and quantitative structure-activity relationship studies leading to the discovery of TMC207[J].Future Med Chem,2011,3(11):1345-1360.
    [36] Ahmad N,Ahuja SD,Akkerman OW,et al.Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis:an individual patient data meta-analysis[J].Lancet,2018,392(10150):821-834.
    [37] Abrahams KA,Cox JA,Spivey VL,et al.Identification of novel imidazo[1,2-a]pyridine inhibitors targeting M.tuberculosis QcrB[J].PLoS One,2012,7(12):e52951.
    [38] Pethe K,Bifani P,Jang J,et al.Discovery of Q203,a potent clinical candidate for the treatment of tuberculosis[J].Nat Med,2013,19(9):1157-1160.
    [39] Barbachyn MR,Hutchinson DK,Brickner SJ,et al.Identification of a novel oxazolidinone(U-100480)with potent antimycobacterial activity[J].J Med Chem,1996,39(3):680-685.
    [40] Williams KN,Stover CK,Zhu T,et al.Promising antituberculosis activity of the oxazolidinone PNU-100480 relative to that of linezolid in a murine model[J].Antimicrob Agents Chemother,2009,53(4):1314-1319.
    [41] Williams KN,Brickner SJ,Stover CK,et al.Addition of PNU-100480 to first-line drugs shortens the time needed to cure murine tuberculosis[J].Am J Resp Crit Care,2009,180(4):371-376.
    [42] Wallis RS,Jakubiec WM,Kumar V,et al.Pharmacokinetics and whole-blood bactericidal activity against Mycobacterium tuberculosis of single doses of PNU-100480 in healthy volunteers[J].J Infect Dis,2010,202(5):745-751.
    [43] Wallis RS,Jakubiec W,Kumar V,et al.Biomarker-assisted dose selection for safety and efficacy in early development of PNU-100480 for tuberculosis[J].Antimicrob Agents Chemother,2011,55(2):567-574.
    [44] Li X,Hernandez V,Rock FL,et al.Discovery of a potent and specific M.tuberculosis leucyl-tRNA synthetase inhibitor:(S)-3-(aminomethyl)-4-chloro-7-(2-hydroxyethoxy)benzo[c][1,2] oxaborol-1(3H)-ol(GSK656)[J].J Med Chem,2017,60(19):8011-8026.
    [45] Tenero D,Derimanov G,Carlton A,et al.First-time-in-human study and prediction of early bactericidal activity for GSK3036656,a potent leucyl-tRNA synthetase inhibitor for tuberculosis treatment[J].Antimicrob Agents Chemother,2019,63(8):e00240-19.
    [46] Ralph AP,Kenangalem E,Waramori G,et al.High morbidity during treatment and residual pulmonary disability in pulmonary tuberculosis:under-recognised phenomena[J].PLoS One,2013,8(11):e80302.
    [47] Willcox PA,Ferguson AD.Chronic obstructive airways disease following treated pulmonary tuberculosis[J].Resp Med,1989,83(3):195-198.
    [48] Wallis RS,Maeurer M,Mwaba P,et al.Tuberculosis—advances in development of new drugs,treatment regimens,host-directed therapies,and biomarkers[J].Lancet Infect Dis,2016,16(4):e34-e46.
  • 期刊类型引用(11)

    1. 曾峥,张可锋,李波,钟明利. 姜黄素对抗结核药物致肝损伤的抑制作用. 华夏医学. 2022(04): 1-5 . 百度学术
    2. 朱禧,唐学峰,施建党,周占文,谢磊,丁惠强. 3D打印载PaMZ/BMP-2的nHA抗结核人工骨体外缓释及抗结核性能研究. 中国脊柱脊髓杂志. 2022(08): 735-742 . 百度学术
    3. 徐泽月,郭宏丽,胡雅慧,陈峰,许静,田曼. 异烟肼引起的肝毒性及其影响因素的研究进展. 中国新药杂志. 2022(22): 2251-2256 . 百度学术
    4. 刘昌昊,郑建平,施建党,朱禧,周占文,张旭. 负载抗结核药物与骨形态发生蛋白2缓释微球的3D打印人工骨能促进骨髓间充质干细胞成骨. 中国组织工程研究. 2021(28): 4447-4453 . 百度学术
    5. 鲁团伟,王育基,庄妮拉. 2HRZSL/6HRL方案复治肺结核的临床分析. 中华肺部疾病杂志(电子版). 2021(02): 234-237 . 百度学术
    6. 于洋,朱琳,蔡春葵. 胸腺五肽联合常规抗结核药物治疗耐多药结核病患者的效果. 中国民康医学. 2021(09): 35-37 . 百度学术
    7. 姚玲玲,徐萌伶,余章昕,刘洋洋,李文兰. 腺果藤属植物的化学成分和药理作用研究进展. 中国药房. 2021(13): 1647-1651 . 百度学术
    8. 朱慧,付雷,张炜焱,王彬,陈曦,陆宇. 五种抗结核新药在小鼠体内的药代动力学/药效学初步研究. 中国防痨杂志. 2021(10): 1056-1065 . 百度学术
    9. 龙慧珍,周晓蕾. 回生甘露丸联合乙胺吡嗪利福异烟治疗初期肺结核的临床研究. 现代药物与临床. 2021(10): 2093-2097 . 百度学术
    10. 陈春燕. 抗结核治疗常见药源性疾病的预防与处理. 上海医药. 2021(21): 19-23 . 百度学术
    11. 田敏,顾国林. 肺结核并发呼吸道感染患者痰标本中病原菌的分布与耐药性分析. 抗感染药学. 2021(11): 1625-1628 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  624
  • HTML全文浏览量:  3
  • PDF下载量:  1152
  • 被引次数: 15
出版历程
  • 刊出日期:  2020-04-24

目录

    /

    返回文章
    返回