• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

LncRNA调控肝脏疾病中信号转导通路的研究进展

刘丽, 张倩文, 农程, 张曦, 徐小婷, Mohammed Ismail, 肖莉, 江振洲, 张陆勇, 孙丽新

刘丽, 张倩文, 农程, 张曦, 徐小婷, Mohammed Ismail, 肖莉, 江振洲, 张陆勇, 孙丽新. LncRNA调控肝脏疾病中信号转导通路的研究进展[J]. 中国药科大学学报, 2020, 51(3): 277-286. DOI: 10.11665/j.issn.1000-5048.20200304
引用本文: 刘丽, 张倩文, 农程, 张曦, 徐小婷, Mohammed Ismail, 肖莉, 江振洲, 张陆勇, 孙丽新. LncRNA调控肝脏疾病中信号转导通路的研究进展[J]. 中国药科大学学报, 2020, 51(3): 277-286. DOI: 10.11665/j.issn.1000-5048.20200304
LIU Li, ZHANG Qianwen, NONG Cheng, ZHANG Xi, XU Xiaoting, Mohammed Ismail, XIAO Li, JIANG Zhenzhou, ZHANG Luyong, SUN Lixin. Research progress of lncRNA regulating signal transduction pathway in liver diseases[J]. Journal of China Pharmaceutical University, 2020, 51(3): 277-286. DOI: 10.11665/j.issn.1000-5048.20200304
Citation: LIU Li, ZHANG Qianwen, NONG Cheng, ZHANG Xi, XU Xiaoting, Mohammed Ismail, XIAO Li, JIANG Zhenzhou, ZHANG Luyong, SUN Lixin. Research progress of lncRNA regulating signal transduction pathway in liver diseases[J]. Journal of China Pharmaceutical University, 2020, 51(3): 277-286. DOI: 10.11665/j.issn.1000-5048.20200304

LncRNA调控肝脏疾病中信号转导通路的研究进展

基金项目: 国家自然科学基金资助项目(No.81803784,No.81573690)

Research progress of lncRNA regulating signal transduction pathway in liver diseases

Funds: This study was supported by the National Natural Science Foundation of China(No.81803784,No.81573690)
  • 摘要: 肝脏疾病的发病率逐年上升,由于肝脏疾病发病诱因复杂和发病机制尚未阐明,治愈率不够理想,迫切需要明确其作用机制以找到更有效的治疗靶点与药物。长链非编码RNA( long non-coding RNA,lncRNA)作为一种长度超过200 nt的非编码RNA,是近年来肝脏疾病的研究热点。本文以肝脏疾病中主要的信号转导通路为主线,对近年来lncRNA调控肝脏疾病相关信号通路的最新研究进展进行归纳总结,详细阐述lncRNA通过调节肝脏疾病中关键的信号通路,参与细胞增殖、凋亡、侵袭、迁移等多种生理过程,从而促进肝脏疾病的发生发展,为肝脏疾病的机制研究提供新的思路,为寻找治疗肝脏疾病的新靶点及生物标志物提供新的研究方向。
    Abstract: The incidence of liver disease is increasing year by year. Due to the complex predisposing factors and unclear pathogenesis of liver diseases, the cure rate is still not ideal, so it is urgent to clarify its mechanism to find more effective therapeutic targets and drugs. Long non-coding RNA (lncRNA), as a non-coding RNA with a length of more than 200 nt, is a research hotspot in liver diseases in recent years. Focusing on the main signal transduction pathways in liver diseases, this review mainly summarizes the latest research progress of lncRNA in regulating liver disease-related signaling pathways, and elaborates that lncRNAs participate in various physiological processes such as cell proliferation, apoptosis, invasion, and migration by regulating key signaling pathways in liver diseases, thereby promoting the occurrence and development of liver diseases. This review provides new ideas for studying the mechanism of liver diseases, and new directions for finding new targets and biomarkers for the treatment of liver diseases.
  • [1] . World J Gastroenterol, 2008, 14(26): 4111-4119.
    [2] Xu LC, Chen QN, Liu XQ, et al. Erratum: Up-regulation of LINC00161 correlates with tumor migration and invasion and poor prognosis of patients with hepatocellular carcinoma[J]. Oncotarget, 2019, 10(14): 1474.
    [3] Song YF, Liu CN, Liu X, et al. H19 promotes cholestatic liver fibrosis by preventing ZEB1-mediated inhibition of epithelial cell adhesion molecule[J]. Hepatology, 2017, 66(4): 1183-1196.
    [4] Tang SH, Gao JH, Wen SL, et al. Expression of cyclooxygenase-2 is correlated with lncRNA-COX-2 in cirrhotic mice induced by carbon tetrachloride[J]. Mol Med Rep, 2017, 15(4): 1507-1512.
    [5] Chen X, Tan XR, Li SJ, et al. LncRNA NEAT1 promotes hepatic lipid accumulation via regulating miR-146a-5p/ROCK1 in nonalcoholic fatty liver disease[J]. Life Sci, 2019, 235: 116829.
    [6] Pan XF, Zheng GB, Gao CF. LncRNA PVT1: a novel therapeutic target for cancers[J]. Clin Lab, 2018, 64(5):655-662.
    [7] Tang XW, Gao Y, Yu LX, et al. Correlations between lncRNA-SOX2OT polymorphism and susceptibility to breast cancer in a Chinese population[J]. Biomark Med, 2017, 11(3): 277-284.
    [8] Yoon JH, Abdelmohsen K, Gorospe M. Functional interactions among microRNAs and long noncoding RNAs[J]. Semin Cell Dev Biol, 2014, 34: 9-14.
    [9] Gong CG, Maquat LE. LncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3'''' UTRs via Alu elements[J]. Nature, 2011, 470(7333): 284-288.
    [10] Long FQ, Su QJ, Zhou JX, et al. LncRNA SNHG12 ameliorates brain microvascular endothelial cell injury by targeting miR-199a[J]. Neural Regen Res, 2018, 13(11): 1919-1926.
    [11] Liu Y, Pan SD, Liu L, et al. A genetic variant in long non-coding RNA HULC contributes to risk of HBV-related hepatocellular carcinoma in a Chinese population[J]. PLoS One, 2012, 7(4): e35145. doi:10.1371/journal.pone.0035145.
    [12] Li J, Wang XC, Tang JW, et al. HULC and Linc00152 act as novel biomarkers in predicting diagnosis of hepatocellular carcinoma[J]. Cell Physiol Biochem, 2015, 37(2): 687-696.
    [13] Gao JZ, Li J, Du JL, et al. Long non-coding RNA HOTAIR is a marker for hepatocellular carcinoma progression and tumor recurrence[J]. Oncol Lett, 2016, 11(3): 1791-1798.
    [14] Liu RP, Li X, Zhu WW, et al. Cholangiocyte-derived exosomal long noncoding RNA H19 promotes hepatic stellate cell activation and cholestatic liver fibrosis[J]. Hepatology, 2019, 70(4): 1317-1335.
    [15] Derynck R, Budi EH. Specificity, versatility, and control of TGF-β family signaling[J]. Sci Signal, 2019, 12(570): eaav5183.
    [16] Hartke J, Johnson M, Ghabril M. The diagnosis and treatment of hepatocellular carcinoma[J]. Semin Diagn Pathol, 2017, 34(2): 153-159.
    [17] Hu ML, Wang XY, Chen WM. TGF-β1 upregulates the expression of lncRNA UCA1 and its downstream HXK2 to promote the growth of hepatocellular carcinoma[J]. Eur Rev Med Pharmacol Sci, 2018, 22(15): 4846-4854.
    [18] Wang F, Yuan JH, Wang SB, et al. Oncofetal long noncoding RNA PVT1 promotes proliferation and stem cell-like property of hepatocellular carcinoma cells by stabilizing NOP2[J]. Hepatology, 2014, 60(4): 1278-1290.
    [19] Yuan JH, Yang F, Wang F, et al. A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma[J]. Cancer Cell, 2014, 25(5): 666-681.
    [20] Shi ZT, Wei D, Wu HM, et al. Long non-coding RNA snaR is involved in the metastasis of liver cancer possibly through TGF-β1[J]. Oncol Lett, 2019, 17(6): 5565-5571.
    [21] Yang X, Cai JB, Peng R, et al. The long noncoding RNA NORAD enhances the TGF-β pathway to promote hepatocellular carcinoma progression by targeting miR-202-5p[J]. J Cell Physiol, 2019, 234(7): 12051-12060.
    [22] Zhang JQ, Han C, Ungerleider N, et al. A transforming growth factor-β and H19 signaling Axis in tumor-initiating hepatocytes that regulates hepatic carcinogenesis[J]. Hepatology, 2019, 69(4): 1549-1563.
    [23] Fu N, Niu XM, Wang Y, et al. Role of lncRNA-activated by transforming growth factor beta in the progression of hepatitis C virus-related liver fibrosis[J]. Discov Med, 2016, 22(119): 29-42.
    [24] Zhang K, Han XH, Zhang Z, et al. The liver-enriched lnc-LFAR1 promotes liver fibrosis by activating TGFβ and Notch pathways[J]. Nat Commun, 2017, 8(1): 144.
    [25] Zhu J, Luo ZG, Pan YD, et al. H19/miR-148a/USP4 Axis facilitates liver fibrosis by enhancing TGF-β signaling in both hepatic stellate cells and hepatocytes[J]. J Cell Physiol, 2019, 234(6): 9698-9710.
    [26] Artavanis-Tsakonas S, Matsuno K, Fortini ME. Notch signaling[J]. Science, 1995, 268(5208): 225-232.
    [27] Jia M, Jiang L, Wang YD, et al. LincRNA-p21 inhibits invasion and metastasis of hepatocellular carcinoma through Notch signaling-induced epithelial-mesenchymal transition[J]. Hepatol Res, 2016, 46(11): 1137-1144.
    [28] Zhang HF, Li W, Han YD. LINC00261 suppresses cell proliferation, invasion and Notch signaling pathway in hepatocellular carcinoma[J]. Cancer Biomark, 2018, 21(3): 575-582.
    [29] Hao L,Xing YC,Chun MW,et al.A Notch1-regulated lncRNA,AK022798,contributes to the baicalein-induced apoptosis in hepatocellular carcinoma[J].Int J Clin Exp Pathol,2017,10(4):4303-4311.
    [30] Chen YX, Weng ZH, Qi D, et al. Effect of Notch signaling on the activation of hepatic stellate cells[J]. Chin J Hepatol(中华肝脏病杂志), 2012, 20(9): 677-682.
    [31] Li CY, Song GR, Zhang SY, et al. Wnt3a increases the metastatic potential of non-small cell lung cancer cells in vitro in part via its upregulation of Notch3[J]. Oncol Rep, 2015, 33(3): 1207-1214.
    [32] Zhang K, Zhang MX, Yao QB, et al. The hepatocyte-specifically expressed lnc-HSER alleviates hepatic fibrosis by inhibiting hepatocyte apoptosis and epithelial-mesenchymal transition[J]. Theranostics, 2019, 9(25): 7566-7582.
    [33] Noorolyai S, Shajari N, Baghbani E, et al. The relation between PI3K/AKT signalling pathway and cancer[J]. Gene, 2019, 698: 120-128.
    [34] Han YD, Chen MZ, Wang AL, et al. STAT3-induced upregulation of lncRNA CASC11 promotes the cell migration, invasion and epithelial-mesenchymal transition in hepatocellular carcinoma by epigenetically silencing PTEN and activating PI3K/AKT signaling pathway[J]. Biochem Biophys Res Commun, 2019, 508(2): 472-479.
    [35] Wang X, Dong K, Jin QZ, et al. Upregulation of lncRNA FER1L4 suppresses the proliferation and migration of the hepatocellular carcinoma via regulating PI3K/AKT signal pathway[J]. J Cell Biochem, 2019, 120(4): 6781-6788.
    [36] Wei HM, Hu J, Pu J, et al. Long noncoding RNA HAGLROS promotes cell proliferation, inhibits apoptosis and enhances autophagy via regulating miR-5095/ATG12 Axis in hepatocellular carcinoma cells[J]. Int Immunopharmacol, 2019, 73: 72-80.
    [37] Huang JL, Cao SW, Ou QS, et al. The long non-coding RNA PTTG3P promotes cell growth and metastasis via up-regulating PTTG1 and activating PI3K/AKT signaling in hepatocellular carcinoma[J]. Mol Cancer, 2018, 17(1): 93.
    [38] Wu SM, Li TH, Yun H, et al. MiR-140-3p knockdown suppresses cell proliferation and fibrogenesis in hepatic stellate cells via PTEN-mediated AKT/mTOR signaling[J]. Yonsei Med J, 2019, 60(6): 561-569.
    [39] Dong ZH, Li S, Wang XH, et al. LncRNA GAS5 restrains CCl4-induced hepatic fibrosis by targeting miR-23a through the PTEN/PI3K/Akt signaling pathway[J]. Am J Physiol Gastrointest Liver Physiol, 2019, 316(4): G539-G550.
    [40] Yu FJ, Chen BC, Dong PH, et al. HOTAIR epigenetically modulates PTEN expression via MicroRNA-29b: a novel mechanism in regulation of liver fibrosis[J]. Mol Ther, 2017, 25(1): 205-217.
    [41] Huang TJ, Ren JJ, Zhang QQ, et al. IGFBPrP1 accelerates autophagy and activation of hepatic stellate cells via mutual regulation between H19 and PI3K/AKT/mTOR pathway[J]. Biomedecine Pharmacother, 2019, 116: 109034.
    [42] Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the american association for the study of liver diseases[J]. Hepatology, 2018, 67(1): 328-357.
    [43] Wang X. Down-regulation of lncRNA-NEAT1 alleviated the non-alcoholic fatty liver disease via mTOR/S6K1 signaling pathway[J]. J Cell Biochem, 2018, 119(2): 1567-1574.
    [44] Huang P, Huang FZ, Liu HZ, et al. LncRNA MEG3 functions as a Cerna in regulating hepatic lipogenesis by competitively binding to miR-21 with LRP6[J]. Metab Clin Exp, 2019, 94: 1-8.
    [45] Liang WC, Ren JL, Wong CW, et al. LncRNA-NEF antagonized epithelial to mesenchymal transition and cancer metastasis via Cis-regulating FOXA2 and inactivating Wnt/β-catenin signaling[J]. Oncogene, 2018, 37(11): 1445-1456.
    [46] Zhang Y, Mi L, Xuan Y, et al. LncRNA HOTAIRM1 inhibits the progression of hepatocellular carcinoma by inhibiting the Wnt signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2018, 22(15): 4861-4868.
    [47] Zhu LY, Yang NH, Du GQ, et al. LncRNA CRNDE promotes the epithelial-mesenchymal transition of hepatocellular carcinoma cells via enhancing the Wnt/β-catenin signaling pathway[J]. J Cell Biochem, 2018. doi:10.1002/jcb.26762.
    [48] Fu XM, Zhu XY, Qin FJ, et al. Linc00210 drives Wnt/β-catenin signaling activation and liver tumor progression through CTNNBIP1-dependent manner[J]. Mol Cancer, 2018, 17(1): 73.
    [49] Yu FJ, Dong PH, Mao YF, et al. Loss of lncRNA-SNHG7 promotes the suppression of hepatic stellate cell activation via miR-378a-3p and DVL2[J]. Mol Ther Nucleic Acids, 2019, 17: 235-244.
    [50] Fu N, Zhao SX, Kong LB, et al. LncRNA-ATB/microRNA-200a/β-catenin regulatory Axis involved in the progression of HCV-related hepatic fibrosis[J]. Gene, 2017, 618: 1-7.
    [51] Yu FJ, Guo Y, Chen BC, et al. LincRNA-p21 inhibits the wnt/β-catenin pathway in activated hepatic stellate cells via sponging MicroRNA-17-5p[J]. Cell Physiol Biochem, 2017, 41(5): 1970-1980.
    [52] Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions[J]. Microbiol Mol Biol Rev, 2004, 68(2): 320-344.
    [53] Bao H, Guo CG, Qiu PC, et al. Long non-coding RNA Igf2as controls hepatocellular carcinoma progression through the ERK/MAPK signaling pathway[J]. Oncol Lett, 2017, 14(3): 2831-2837.
    [54] Peng W, Fan H. Long noncoding RNA CCHE1 indicates a poor prognosis of hepatocellular carcinoma and promotes carcinogenesis via activation of the ERK/MAPK pathway[J]. Biomedecine Pharmacother, 2016, 83: 450-455.
    [55] Shen XT, Guo HY, Xu JJ, et al. Inhibition of lncRNA HULC improves hepatic fibrosis and hepatocyte apoptosis by inhibiting the MAPK signaling pathway in rats with nonalcoholic fatty liver disease[J]. J Cell Physiol, 2019, 234(10):18169-18179.
计量
  • 文章访问数:  211
  • HTML全文浏览量:  3
  • PDF下载量:  506
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-01
  • 修回日期:  2020-05-14
  • 刊出日期:  2020-06-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭