• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

PD-L1疫苗中引入不同免疫原性氨基酸对T细胞亚群分化的影响

陈红梅, 康彦良, 刘利, 姚文兵, 田浤

陈红梅, 康彦良, 刘利, 姚文兵, 田浤. PD-L1疫苗中引入不同免疫原性氨基酸对T细胞亚群分化的影响[J]. 中国药科大学学报, 2020, 51(3): 349-356. DOI: 10.11665/j.issn.1000-5048.20200313
引用本文: 陈红梅, 康彦良, 刘利, 姚文兵, 田浤. PD-L1疫苗中引入不同免疫原性氨基酸对T细胞亚群分化的影响[J]. 中国药科大学学报, 2020, 51(3): 349-356. DOI: 10.11665/j.issn.1000-5048.20200313
CHEN Hongmei, KANG Yanliang, LIU Li, YAO Wenbing, TIAN Hong. Effects of different immunogenic amino acids in PD-L1 vaccine on the differentiation of T cell subsets[J]. Journal of China Pharmaceutical University, 2020, 51(3): 349-356. DOI: 10.11665/j.issn.1000-5048.20200313
Citation: CHEN Hongmei, KANG Yanliang, LIU Li, YAO Wenbing, TIAN Hong. Effects of different immunogenic amino acids in PD-L1 vaccine on the differentiation of T cell subsets[J]. Journal of China Pharmaceutical University, 2020, 51(3): 349-356. DOI: 10.11665/j.issn.1000-5048.20200313

PD-L1疫苗中引入不同免疫原性氨基酸对T细胞亚群分化的影响

基金项目: 国家自然科学基金资助项目(No. 81573222, No. 81673343, No. 91753112)

Effects of different immunogenic amino acids in PD-L1 vaccine on the differentiation of T cell subsets

Funds: This study was supported by the National Natural Science Foundation of China (No. 81973222, No.81673343, No.91753112)
  • 摘要: 为了比较内源性的3-硝基酪氨酸与非天然的4-硝基苯丙氨酸在PD-L1疫苗中的引入对T细胞亚群分化的影响,利用遗传密码扩充技术,将这两种免疫原性氨基酸分别引入到PD-L1疫苗的相同位点,获得具有3-硝基酪氨酸以及4-硝基苯丙氨酸的两种PD-L1突变体。用这两种突变体免疫小鼠,分析对小鼠脾脏T细胞亚群分化的影响。流式细胞术检测结果显示,4-硝基苯丙氨酸在PD-L1疫苗中的引入可促进Th1细胞的极化,同时降低Treg细胞的比例,3-硝基酪氨酸的引入对Th1细胞的极化无影响,同时能显著提高Treg和Th17细胞的比例。二者在PD-L1疫苗中的引入均能促进脾脏CD8+ T细胞的应答,其中含有4-硝基苯丙氨酸的PD-L1突变体应答效果更强。实验结果表明,与内源性的3-硝基酪氨酸在PD-L1疫苗中的引入相比,非天然的4-硝基苯丙氨酸更适合用于肿瘤疫苗的设计。
    Abstract: To compare the effects of endogenous 3-nitrotyrosine and non-natural 4-nitrophenylalanine in PD-L1 vaccine on the differentiation of T cell subsets, two immunogenic amino acids were introduced into the same site of PD-L1 vaccine. Two PD-L1 mutants with 3-nitrotyrosine and 4-nitrophenylalanine were obtained, respectively, using genetic code expansion technology. Mice were immunized with these two mutants, and their effects on the differentiation of T cell subsets in spleen were analyzed. The results of flow cytometry showed that the introduction of 4-nitrophenylalanine in PD-L1 vaccine could promote the polarization of Th1 cells while reducing the proportion of Treg cells; the introduction of 3-nitrotyrosine had no effect on the polarization of Th1 cells, while significantly increasing the proportion of Treg and Th17 cells. The introduction of both into PD-L1 vaccine could promote the response of CD8+ T cells in spleen, and the response of PD-L1 mutant containing 4-nitrophenylalanine was stronger. In summary, the non-natural 4-nitrophenylalanine is more suitable for the design of tumor vaccines as compared with endogenous 3-nitrotyrosine.
  • [1] . Proc Natl Acad Sci U S A, 2008, 105(32): 11276-11280.
    [2] Grünewald J, Hunt GS, Dong L, et al. Mechanistic studies of the immunochemical termination of self-tolerance with unnatural amino acids[J]. Proc Natl Acad Sci U S A, 2009, 106(11): 4337-4342.
    [3] Khan F, Siddiqui AA. Prevalence of anti-3-nitrotyrosine antibodies in the joint synovial fluid of patients with rheumatoid arthritis, osteoarthritis and systemic lupus erythematosus[J]. Clin Chim Acta, 2006, 370(1/2): 100-107.
    [4] Khan F, Ali R. Antibodies against nitric oxide damaged poly L-tyrosine and 3-nitrotyrosine levels in systemic lupus erythematosus[J]. J Biochem Mol Biol, 2006, 39(2): 189-196.
    [5] Thomson L, Christie J, Vadseth C, et al. Identification of immunoglobulins that recognize 3-nitrotyrosine in patients with acute lung injury after major trauma[J]. Am J Respir Cell Mol Biol, 2007, 36(2): 152-157.
    [6] Ohmori H, Kanayama N. Immunogenicity of an inflammation-associated product, tyrosine nitrated self-proteins[J]. Autoimmun Rev, 2005, 4(4): 224-229.
    [7] Hardy LL, Wick DA, Webb JR. Conversion of tyrosine to the inflammation-associated analog 3''''-nitrotyrosine at either TCR- or MHC-contact positions can profoundly affect recognition of the MHC class I-restricted epitope of lymphocytic choriomeningitis virus glycoprotein 33 by CD8 T cells[J]. J Immunol, 2008, 180(9): 5956-5962.
    [8] He Y, Tian H, Dai X, et al. Immunogenicity of HER2 vaccine containing p-nitrophenylalanine[J]. J China Pharm Univ (中国药科大学学报), 2018, 49(3): 369-375.
    [9] Tian H, He Y, Song XD, et al. Nitrated T helper cell epitopes enhance the immunogenicity of HER2 vaccine and induce anti-tumor immunity[J]. Cancer Lett, 2018, 430: 79-87.
    [10] Tian H, Kang YL, Song XD, et al. PDL1-targeted vaccine exhibits potent antitumor activity by simultaneously blocking PD1/PDL1 pathway and activating PDL1-specific immune responses[J]. Cancer Lett, 2020, 476: 170-182.
    [11] Datta J, Fracol M, McMillan MT, et al. Association of depressed anti-HER2 T-helper type 1 response with recurrence in patients with completely treated HER2-positive breast cancer: role for immune monitoring[J]. JAMA Oncol, 2016, 2(2): 242-246.
    [12] Antony PA, Piccirillo CA, Akpinarli A, et al. CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells[J]. J Immunol, 2005, 174(5): 2591-2601.
    [13] Lakshminrusimha S, Suresh MV, Knight PR, et al. Role of pulmonary artery reactivity and nitric oxide in injury and inflammation following lung contusion[J]. Shock, 2013, 39(3): 278-285.
    [14] Thomson L. 3-Nitrotyrosine modified proteins in atherosclerosis[J]. Dis Markers, 2015, 2015: 1-8.
    [15] Ferreira I, Croca S, Raimondo MG, et al. Nitrated nucleosome levels and neuropsychiatric events in systemic lupus erythematosus; a multi-center retrospective case-control study[J]. Arthritis Res Ther, 2017, 19(1): 287.
    [16] Jin B, Sun T, Yu XH, et al. The effects of TLR activation on T-cell development and differentiation[J]. Clin Dev Immunol, 2012, 2012: 836485.
    [17] Li P, Spolski R, Liao W, et al. Complex interactions of transcription factors in mediating cytokine biology in T cells[J]. Immunol Rev, 2014, 261(1): 141-156.
  • 期刊类型引用(16)

    1. 庄件兵,朱莉,周璐,王明明. UPLC-MS/MS法快速测定污水中多种化学毒品残留. 化学工程师. 2025(04): 28-33+38 . 百度学术
    2. 李昕怡,王韬任,牛德云,徐玉,李斌,孙加学,薛丹,李虹. UPLC-MS/MS法检测污水中4种合成大麻素及其代谢产物. 中国法医学杂志. 2025(02): 213-219 . 百度学术
    3. 郑吴淇,宁弘宇,陈昊,黄忠平,范一雷,柯星. 流动注射-串联质谱法分析污水中11种毒品. 分析试验室. 2024(05): 705-710 . 百度学术
    4. 刘昕,王兵益,杨发震. 水环境毒品监测用于毒情评估的标准体系研究. 云南警官学院学报. 2023(04): 7-12 . 百度学术
    5. 彭诗琪,赵嘉辉,赖华杰,桑柳波. 基于阳离子交换的固相萃取与液相色谱—串联质谱法联用分析污水中的17种非法药物. 化学研究与应用. 2023(08): 1956-1965 . 百度学术
    6. 李雪蕾,袁健彪. 浅谈生活污水中毒品检测技术的分析和应用. 中国石油和化工标准与质量. 2022(04): 41-43 . 百度学术
    7. 郭晶晶,陈丹萍,董露斌,杨飞,胡双英. SPE-HPLC-ESI-MS/MS检测污水中常见13种违禁药物的方法. 新型工业化. 2022(04): 51-54+58 . 百度学术
    8. 王叶,徐磊,徐鹏,杭太俊,宋敏,王优美,徐慧. 污水中常见毒品的分析方法优化及验证. 中国药科大学学报. 2022(04): 467-472 . 本站查看
    9. 李雪松. 生活污水中滥用药物检测技术的应用与分析. 生物化工. 2022(04): 58-61 . 百度学术
    10. 王欢博,米兰,霍婷婷,唐恬,徐布一. 大气环境中毒品监测研究进展. 环境化学. 2022(09): 2974-2985 . 百度学术
    11. 王平,刘晓云,郑振成,梁桂巧,赖胜强. 应用固相萃取-超高效液相色谱-串联质谱法同时检测城市污水中氟胺酮及2种位置异构体. 中国司法鉴定. 2022(05): 67-72 . 百度学术
    12. 向平. 污水毒品监测技术:进展、挑战与展望. 中国司法鉴定. 2022(05): 17-21 . 百度学术
    13. 丁艳,乔宏伟,陈捷,张婷婷,花镇东,杭太俊,刘培培. 在线固相萃取-超高效液相色谱-串联质谱法同时检测污水中氟胺酮等21种毒品及其代谢物. 中国司法鉴定. 2022(05): 39-50 . 百度学术
    14. 赵明明,刘冬娴,伍岚,刘炜,贺江南,陈志伟,易荣楠. 固相萃取/液质联用法检测污水中14种毒品及代谢物. 中国给水排水. 2022(24): 133-138 . 百度学术
    15. 王美丽,李敦毅. QuEChERS法提取-液相色谱-质谱法检测分析制药园区污水中青霉素、洁霉素、土霉素、四环素和庆大霉素残留方法的建立. 分析仪器. 2021(04): 150-154 . 百度学术
    16. Jingyuan Wang,Likai Qia,Chenzhi Hou,Tingting Zhang,Mengyi Chen,Haitao Meng,Mengxiang Su,Hui Xu,Zhendong Hua,Youmei Wang,Bin Di. Automatic analytical approach for the determination of 12 illicit drugs and nicotine metabolites in wastewater using on-line SPE-UHPLC-MS/MS. Journal of Pharmaceutical Analysis. 2021(06): 739-745 . 必应学术

    其他类型引用(2)

计量
  • 文章访问数:  214
  • HTML全文浏览量:  4
  • PDF下载量:  523
  • 被引次数: 18
出版历程
  • 收稿日期:  2020-03-22
  • 修回日期:  2020-05-07
  • 刊出日期:  2020-06-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭