• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

环状RNA与2型糖尿病关系及其临床应用

穆金铭, 刘悦, 张方方, 金亮

穆金铭, 刘悦, 张方方, 金亮. 环状RNA与2型糖尿病关系及其临床应用[J]. 中国药科大学学报, 2020, 51(3): 374-378. DOI: 10.11665/j.issn.1000-5048.20200316
引用本文: 穆金铭, 刘悦, 张方方, 金亮. 环状RNA与2型糖尿病关系及其临床应用[J]. 中国药科大学学报, 2020, 51(3): 374-378. DOI: 10.11665/j.issn.1000-5048.20200316
MU Jinming, LIU Yue, ZHANG Fangfang, JIN Liang. Relationship between circular RNA and type 2 diabetes and its clinical application[J]. Journal of China Pharmaceutical University, 2020, 51(3): 374-378. DOI: 10.11665/j.issn.1000-5048.20200316
Citation: MU Jinming, LIU Yue, ZHANG Fangfang, JIN Liang. Relationship between circular RNA and type 2 diabetes and its clinical application[J]. Journal of China Pharmaceutical University, 2020, 51(3): 374-378. DOI: 10.11665/j.issn.1000-5048.20200316

环状RNA与2型糖尿病关系及其临床应用

基金项目: 国家自然科学基金资助项目(No. 81570696)

Relationship between circular RNA and type 2 diabetes and its clinical application

Funds: This study was supported by the National Natural Science Foundation of China (No. 81570696)
  • 摘要: 环状RNA(circular RNA)是一类新发现的具有共价闭合环的非编码RNA,在2型糖尿病的发生发展中扮演着重要角色。本文从环状RNA调控胰岛β细胞功能及其调控心脏、肾脏等器官的代谢活动两方面,综述了环状RNA与2型糖尿病的关系,同时指出了环状RNA作为2型糖尿病及其并发症临床诊断标志物的可能性,以期为2型糖尿病的预防、诊断和治疗提供参考和研究方向。
    Abstract: Circular RNA (circRNA) is a novel type of non-coding RNA with covalently closed loops which plays an important role in the occurrence and development of type 2 diabetes. In this paper, the relationship between circRNA and type 2 diabetes in terms of the regulation of pancreatic β-cell function by circRNA and the metabolic activity of heart, kidney and other organs is reviewed, and the possibility of circRNA as a clinical diagnostic marker for type 2 diabetes and its complications is emphasized, hoping to provide reference and clues for the prevention, diagnosis and treatment of type 2 diabetes.
  • [1] . Nature, 2019, 576(7785): 51-60.
    [2] Czech MP. Insulin action and resistance in obesity and type 2 diabetes[J]. Nat Med, 2017, 23(7): 804-814.
    [3] Prentki M, Nolan CJ. Islet beta cell failure in type 2 diabetes[J]. J Clin Invest, 2006, 116(7): 1802-1812.
    [4] Li X, Yang L, Chen LL. The biogenesis, functions, and challenges of circular RNAs[J]. Mol Cell, 2018, 71(3): 428-442.
    [5] Bolha L, Ravnik-Glava? M, Glava? D. Circular RNAs: biogenesis, function, and a role as possible cancer biomarkers[J]. Int J Genomics, 2017, 2017: 6218353.
    [6] Ghasemi H, Sabati Z, Ghaedi H, et al. Circular RNAs in β-cell function and type 2 diabetes-related complications:a potential diagnostic and therapeutic approach[J]. Mol Biol Rep, 2019, 46(5): 5631-5643.
    [7] Thurner M, van de Bunt M, Torres JM, et al. Integration of human pancreatic islet genomic data refines regulatory mechanisms at type 2 diabetes susceptibility loci[J]. Elife, 2018, 7: e31977.
    [8] Kaur S, Mirza AH, Pociot F. Cell type-selective expression of circular RNAs in human pancreatic islets[J]. Noncoding RNA, 2018, 4(4): E38.
    [9] Stoll L, Sobel J, Rodriguez-Trejo A, et al. Circular RNAs as novel regulators of β-cell functions in normal and disease conditions[J]. Mol Metab, 2018, 9: 69-83.
    [10] Elghazi L, Balcazar N, Bernal-Mizrachi E. Emerging role of protein kinase B/Akt signaling in pancreatic beta-cell mass and function[J]. Int J Biochem Cell Biol, 2006, 38(2): 157-163.
    [11] Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441): 384-388.
    [12] Latreille M, Hausser J, Stützer I, et al. MicroRNA-7a regulates pancreatic β cell function[J]. J Clin Invest, 2014, 124(6): 2722-2735.
    [13] Xu HY, Guo S, Li W, et al. The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells[J]. Sci Rep, 2015, 5: 12453.
    [14] Holdt LM, Stahringer A, Sass K, et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans[J]. Nat Commun, 2016, 7: 12429.
    [15] Zhang ZZ, Zhang TT, Feng RN, et al. CircARF3 alleviates mitophagy-mediated inflammation by targeting miR-103/TRAF3 in mouse adipose tissue[J]. Mol Ther Nucleic Acids, 2019, 14: 192-203.
    [16] K?lling M, Seeger H, Haddad G, et al. The circular RNA ciRs-126 predicts survival in critically ill patients with acute kidney injury[J]. Kidney Int Rep, 2018, 3(5): 1144-1152.
    [17] Parveen A, Jin M, Kim SY. Bioactive phytochemicals that regulate the cellular processes involved in diabetic nephropathy[J]. Phytomedicine, 2018, 39: 146-159.
    [18] Chen JJ, Cui LQ, Yuan JL, et al. Circular RNA WDR77 target FGF-2 to regulate vascular smooth muscle cells proliferation and migration by sponging miR-124[J]. Biochem Biophys Res Commun, 2017, 494(1/2): 126-132.
    [19] Balijepalli C, Druyts E, Siliman G, et al. Hypoglycemia: a review of definitions used in clinical trials evaluating antihyperglycemic drugs for diabetes[J]. Clin Epidemiol, 2017, 9: 291-296.
    [20] Shang FF, Luo SX, Liang XX, et al. Alterations of circular RNAs in hyperglycemic human endothelial cells[J]. Biochem Biophys Res Commun, 2018, 499(3): 551-555.
    [21] Liu C, Yao MD, Li CP, et al. Silencing of circular RNA-ZNF609 ameliorates vascular endothelial dysfunction[J]. Theranostics, 2017, 7(11): 2863-2877.
    [22] Khodabandehloo H, Gorgani-Firuzjaee S, Panahi G, et al. Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction[J]. Transl Res, 2016, 167(1): 228-256.
    [23] Fang Y, Wang XX, Li WQ, et al. Screening of circular RNAs and validation of circANKRD36 associated with inflammation in patients with type 2 diabetes mellitus[J]. Int J Mol Med, 2018, 42(4): 1865-1874.
    [24] Zhang SJ, Chen X, Li CP, et al. Identification and characterization of circular RNAs as a new class of putative biomarkers in diabetes retinopathy[J]. Invest Ophthalmol Vis Sci, 2017, 58(14): 6500-6509.
    [25] Vaishya S, Sarwade RD, Seshadri V. MicroRNA, proteins, and metabolites as novel biomarkers for prediabetes, diabetes, and related complications[J]. Front Endocrinol (Lausanne), 2018, 9: 180.
    [26] Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs[J]. Nat Biotechnol, 2014, 32(5): 453-461.
    [27] Zhang ZR, Yang TT, Xiao JJ. Circular RNAs: promising biomarkers for human diseases[J]. EBioMedicine, 2018, 34: 267-274.
    [28] Zhao ZZ, Li XJ, Jian DD, et al. Hsa_circ_0054633 in peripheral blood can be used as a diagnostic biomarker of pre-diabetes and type 2 diabetes mellitus[J]. Acta Diabetol, 2017, 54(3): 237-245.
    [29] Li XJ, Zhao ZZ, Jian DD, et al. Hsa-circRNA11783-2 in peripheral blood is correlated with coronary artery disease and type 2 diabetes mellitus[J]. Diab Vasc Dis Res, 2017, 14(6): 510-515.
  • 期刊类型引用(16)

    1. 庄件兵,朱莉,周璐,王明明. UPLC-MS/MS法快速测定污水中多种化学毒品残留. 化学工程师. 2025(04): 28-33+38 . 百度学术
    2. 李昕怡,王韬任,牛德云,徐玉,李斌,孙加学,薛丹,李虹. UPLC-MS/MS法检测污水中4种合成大麻素及其代谢产物. 中国法医学杂志. 2025(02): 213-219 . 百度学术
    3. 郑吴淇,宁弘宇,陈昊,黄忠平,范一雷,柯星. 流动注射-串联质谱法分析污水中11种毒品. 分析试验室. 2024(05): 705-710 . 百度学术
    4. 刘昕,王兵益,杨发震. 水环境毒品监测用于毒情评估的标准体系研究. 云南警官学院学报. 2023(04): 7-12 . 百度学术
    5. 彭诗琪,赵嘉辉,赖华杰,桑柳波. 基于阳离子交换的固相萃取与液相色谱—串联质谱法联用分析污水中的17种非法药物. 化学研究与应用. 2023(08): 1956-1965 . 百度学术
    6. 李雪蕾,袁健彪. 浅谈生活污水中毒品检测技术的分析和应用. 中国石油和化工标准与质量. 2022(04): 41-43 . 百度学术
    7. 郭晶晶,陈丹萍,董露斌,杨飞,胡双英. SPE-HPLC-ESI-MS/MS检测污水中常见13种违禁药物的方法. 新型工业化. 2022(04): 51-54+58 . 百度学术
    8. 王叶,徐磊,徐鹏,杭太俊,宋敏,王优美,徐慧. 污水中常见毒品的分析方法优化及验证. 中国药科大学学报. 2022(04): 467-472 . 本站查看
    9. 李雪松. 生活污水中滥用药物检测技术的应用与分析. 生物化工. 2022(04): 58-61 . 百度学术
    10. 王欢博,米兰,霍婷婷,唐恬,徐布一. 大气环境中毒品监测研究进展. 环境化学. 2022(09): 2974-2985 . 百度学术
    11. 王平,刘晓云,郑振成,梁桂巧,赖胜强. 应用固相萃取-超高效液相色谱-串联质谱法同时检测城市污水中氟胺酮及2种位置异构体. 中国司法鉴定. 2022(05): 67-72 . 百度学术
    12. 向平. 污水毒品监测技术:进展、挑战与展望. 中国司法鉴定. 2022(05): 17-21 . 百度学术
    13. 丁艳,乔宏伟,陈捷,张婷婷,花镇东,杭太俊,刘培培. 在线固相萃取-超高效液相色谱-串联质谱法同时检测污水中氟胺酮等21种毒品及其代谢物. 中国司法鉴定. 2022(05): 39-50 . 百度学术
    14. 赵明明,刘冬娴,伍岚,刘炜,贺江南,陈志伟,易荣楠. 固相萃取/液质联用法检测污水中14种毒品及代谢物. 中国给水排水. 2022(24): 133-138 . 百度学术
    15. 王美丽,李敦毅. QuEChERS法提取-液相色谱-质谱法检测分析制药园区污水中青霉素、洁霉素、土霉素、四环素和庆大霉素残留方法的建立. 分析仪器. 2021(04): 150-154 . 百度学术
    16. Jingyuan Wang,Likai Qia,Chenzhi Hou,Tingting Zhang,Mengyi Chen,Haitao Meng,Mengxiang Su,Hui Xu,Zhendong Hua,Youmei Wang,Bin Di. Automatic analytical approach for the determination of 12 illicit drugs and nicotine metabolites in wastewater using on-line SPE-UHPLC-MS/MS. Journal of Pharmaceutical Analysis. 2021(06): 739-745 . 必应学术

    其他类型引用(2)

计量
  • 文章访问数:  183
  • HTML全文浏览量:  6
  • PDF下载量:  489
  • 被引次数: 18
出版历程
  • 收稿日期:  2019-12-29
  • 修回日期:  2020-05-12
  • 刊出日期:  2020-06-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭