[1] |
D'Mello SR, Cruz CN, Chen ML, et al. The evolving landscape of drug products containing nanomaterials in the United States [J]. Nat Nanotechnol, 2017, 12(6):523-529.
|
[2] |
Lee W, Im HJ. Theranostics based on liposome:looking back and forward [J]. Nucl Med Mol Imaging, 2019, 53(4):242-246.
|
[3] |
Fan Y, Zhang Q. Development of liposomal formulations:from concept to clinical investigations [J]. Asian J Pharm Sci, 2013, 8(2):81-87.
|
[4] |
Schmitt CJ, Dietrich S, Ho AD, et al. Replacement of conventional doxorubicin by pegylated liposomal doxorubicin is a safe and effective alternative in the treatment of non-Hodgkin's lymphoma patients with cardiac risk factors [J]. Ann Hematol, 2012, 91(3):391-397.
|
[5] |
Arantseva D, Vodovozova E. Platinum-based antitumor drugs and their liposomal formulations in clinical trials [J]. Russ J Bioorg Chem, 2018, 44(6):619-630.
|
[6] |
Bulbake U, Doppalapudi S, Kommineni N, et al. Liposomal formulations in clinical use:an updated review [J]. Pharmaceutics, 2017, 9(2):12.
|
[7] |
Mohamed M, Abu Lila AS, Shimizu T, et al. PEGylated liposomes:immunological responses [J]. Sci Technol Adv Mater, 2019, 20(1):710-724.
|
[8] |
Lila ASA, Uehara Y, Ishida T, et al. Application of polyglycerol coating to plasmid DNA lipoplex for the evasion of the accelerated blood clearance phenomenon in nucleic acid delivery [J]. Eur J Pharm Sci, 2014, 103(2):557-566.
|
[9] |
Mima Y, Lila ASA, Shimizu T, et al. Ganglioside inserted into PEGylated liposome attenuates anti-PEG immunity [J]. J Control Release, 2017, 250:20-26.
|
[10] |
Lila ASA, Kiwada H, Ishida T. The accelerated blood clearance (ABC) phenomenon:clinical challenge and approaches to manage [J]. J Control Release, 2013, 172(1):38-47.
|
[11] |
Mészáros T, Csincsi áI, Uzonyi B, et al. Factor H inhibits complement activation induced by liposomal and micellar drugs and the therapeutic antibody rituximab in vitro [J]. Nanomed Nanotechnol, 2016, 12(4):1023-1031.
|
[12] |
Rietwyk S, Peer D. Next-generation lipids in RNA interference therapeutics [J]. ACS Nano, 2017, 11(8):7572-7586.
|
[13] |
Barba AA, Bochicchio S, Dalmoro A, et al. Lipid delivery systems for nucleic-acid-based drugs:from production to clinical applications [J]. Pharmaceutics, 2019, 11(8):360.
|
[14] |
Chen Z, Zhang T, Wu B, et al. Insights into the therapeutic potential of hypoxia-inducible factor-1α small interfering RNA in malignant melanoma delivered via folate-decorated cationic liposomes [J]. Int J Nanomed, 2016, 11:991-1002.
|
[15] |
Wang Y, Gao F, Jiang X, et al. Co-delivery of gemcitabine and Mcl-1 SiRNA via cationic liposome-based system enhances the efficacy of chemotherapy in pancreatic cancer [J]. J Biomed Nanotechnol, 2019, 15(5):966-978.
|
[16] |
Jabir NR, Anwar K, Firoz CK, et al. An overview on the current status of cancer nanomedicines [J]. Curr Med Res Opin, 2018, 34(5):911-921.
|
[17] |
Kapoor M, Lee SL, Tyner KM. Liposomal drug product development and quality:current US experience and perspective [J]. AAPS J, 2017, 19(3):1-10.
|
[18] |
He H, Yuan D, Wu Y, et al. Pharmacokinetics and pharmacodynamics modeling and simulation systems to support the development and regulation of liposomal drugs [J]. Pharmaceutics, 2019, 11(3):110.
|
[19] |
Beltrán-Gracia E, López-Camacho A, Higuera-Ciapara I, et al. Nanomedicine review:clinical developments in liposomal applications [J]. Cancer Nanotechnol, 2019, 10(1):11.
|
[20] |
Harrison TS, Lyseng-Williamson KA. Vincristine sulfate liposome injection [J]. BioDrugs, 2013, 27(1):69-74.
|
[21] |
Stathopoulos GP, Antoniou D, Dimitroulis J, et al. Comparison of liposomal cisplatin versus cisplatin in non-squamous cell non-small-cell lung cancer[J]. Cancer Chemother Pharmacol, 2011, 68(4):945-950.
|
[22] |
Franze S, Selmin F, Samaritani E, et al. Lyophilization of liposomal formulations:still necessary, still challenging [J]. Pharmaceutics, 2018, 10(3):139.
|
[23] |
Akinc A, Maier MA, Manoharan M, et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs [J]. Nat Nanotechnol, 2019, 14(12):1084-1087.
|
[24] |
Gazzano E, Rolando B, Chegaev K, et al. Folate-targeted liposomal nitrooxy-doxorubicin:an effective tool against P-glycoprotein-positive and folate receptor-positive tumors [J]. J Control Release, 2018, 270:37-52.
|
[25] |
Zheng C, Ma C, Bai E, et al. Transferrin and cell-penetrating peptide dual-functioned liposome for targeted drug delivery to glioma [J]. Int J Clin Exp Med, 2015, 8(2):1658-1668.
|
[26] |
Sercombe L, Veerati T, Moheimani F, et al. Advances and challenges of liposome assisted drug delivery [J]. Front Pharmacol, 2015, 6:286.
|
[27] |
Eloy JO, Petrilli R, Trevizan LNF, et al. Immunoliposomes:a review on functionalization strategies and targets for drug delivery [J]. Colloids Surf, B, 2017, 159:454-467.
|
[28] |
Arabi L, Badiee A, Mosaffa F, et al. Targeting CD44 expressing cancer cells with anti-CD44 monoclonal antibody improves cellular uptake and antitumor efficacy of liposomal doxorubicin [J]. J Control Release, 2015, 220:275-286.
|
[29] |
Espelin CW, Leonard SC, Geretti E, et al. Dual HER2 targeting with trastuzumab and liposomal encapsulated doxorubicin (MM-302) demonstrates synergistic antitumor activity in breast and gastric cancer [J]. Cancer Res, 2016, 76(6):1517-1527.
|
[30] |
Merino M, Zalba S, Garrido MJ. Immunoliposomes in clinical oncology:state of the art and future perspectives [J]. J Control Release, 2018, 275:162-176.
|
[31] |
Munster P, Krop IE, LoRusso P, et al. Safety and pharmacokinetics of MM-302, a HER2-targeted antibody-liposomal doxorubicin conjugate, in patients with advanced HER2-positive breast cancer:a phase 1 dose-escalation study [J]. Br J Cancer, 2018, 119(9):1086-1093.
|
[32] |
Dou Y, Hynynen K, Allen C. To heat or not to heat:Challenges with clinical translation of thermosensitive liposomes [J]. J Control Release, 2017, 249:63-73.
|
[33] |
Dicheva BM, ten Hagen TL, Schipper D, et al. Targeted and heat-triggered doxorubicin delivery to tumors by dual targeted cationic thermosensitive liposomes [J]. J Control Release, 2014, 195:37-48.
|
[34] |
Dou YN, Zheng J, Foltz WD, et al. Heat-activated thermosensitive liposomal cisplatin (HTLC) results in effective growth delay of cervical carcinoma in mice [J]. J Control Release, 2014, 178:69-78.
|
[35] |
Cheng Z, Yao K, Liu W, et al. Preparation and characterization of composite delivery system of paclitaxel-loaded temperature sensitive liposome and siRNA-loaded gold nanostar [J]. J China Pharm Univ(中国药科大学学报), 2017, 48(4):445-452.
|
[36] |
Alvarez‐Lorenzo C, Bromberg L, Concheiro A. Light‐sensitive intelligent drug delivery systems [J]. Photochem Photobiol, 2009, 85(4):848-860.
|
[37] |
Miranda D, Lovell JF. Mechanisms of light‐induced liposome permeabilization [J]. Bioeng Transl Med, 2016, 1(3):267-276.
|
[38] |
Luo D, Carter KA, Razi A, et al. Doxorubicin encapsulated in stealth liposomes conferred with light-triggered drug release [J]. Biomaterials, 2016, 75:193-202.
|
[39] |
Xu H, Paxton JW, Wu Z. Enhanced pH-responsiveness, cellular trafficking, cytotoxicity and long-circulation of PEGylated liposomes with post-insertion technique using gemcitabine as a model drug [J]. Pharm Res, 2015, 32(7):2428-2438.
|
[40] |
Kanamala M, Wilson WR, Yang M, et al. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery:a review [J]. Biomaterials, 2016, 85:152-167.
|
[41] |
Zhao Y, Ren W, Zhong T, et al. Tumor-specific pH-responsive peptide-modified pH-sensitive liposomes containing doxorubicin for enhancing glioma targeting and anti-tumor activity [J]. J Control Release, 2016, 222:56-66.
|
[42] |
Chang M, Lu S, Zhang F, et al. RGD-modified pH-sensitive liposomes for docetaxel tumor targeting [J]. Colloids Surf B, 2015, 129:175-182.
|
[43] |
Chi Y, Yin X, Sun K, et al. Redox-sensitive and hyaluronic acid functionalized liposomes for cytoplasmic drug delivery to osteosarcoma in animal models [J]. J Control Release, 2017, 261:113-125.
|