• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

蛋白及多肽类药物长效化制剂学技术研究进展

丁源, 陈新, 涂家生, 孙春萌

丁源, 陈新, 涂家生, 孙春萌. 蛋白及多肽类药物长效化制剂学技术研究进展[J]. 中国药科大学学报, 2020, 51(4): 433-440. DOI: 10.11665/j.issn.1000-5048.20200407
引用本文: 丁源, 陈新, 涂家生, 孙春萌. 蛋白及多肽类药物长效化制剂学技术研究进展[J]. 中国药科大学学报, 2020, 51(4): 433-440. DOI: 10.11665/j.issn.1000-5048.20200407
DING Yuan, CHEN Xin, TU Jiasheng, SUN Chunmeng. Progress in technology of long-acting preparations of protein and peptide drugs[J]. Journal of China Pharmaceutical University, 2020, 51(4): 433-440. DOI: 10.11665/j.issn.1000-5048.20200407
Citation: DING Yuan, CHEN Xin, TU Jiasheng, SUN Chunmeng. Progress in technology of long-acting preparations of protein and peptide drugs[J]. Journal of China Pharmaceutical University, 2020, 51(4): 433-440. DOI: 10.11665/j.issn.1000-5048.20200407

蛋白及多肽类药物长效化制剂学技术研究进展

基金项目: 国家自然科学基金资助项目(No.81972894, No.81673364);国家药典委员会“药品医疗器械审评审批制度改革专项课题”(No.ZG2017-5-03);国家“重大新药创制”科技重大专项资助项目(No.2017ZX09101001006)

Progress in technology of long-acting preparations of protein and peptide drugs

Funds: This study was supported by the National Natural Science Foundation of China (No.81972894, No.81673364), the Chinese Pharmacopoeia Commission “Reform of the Review and Approval System for Drugs and Medical Devices” Project (No.ZG2017-5-03) and the National Science and Technology Major Project for Drug Innovation (No.2017ZX09101001006)
  • 摘要: 蛋白及多肽类药物近年来越来越多地应用到疾病的预防、诊断和治疗之中,然而,蛋白及多肽类药物通常需要注射给药且缺乏长效剂型,给需要长期用药的慢性病患者带来困扰。本文综述了通过制剂学手段对蛋白及多肽类药物进行长效化改造的策略,包括缓释注射剂、植入剂、口服制剂以及经皮给药系统,并总结其缓释机制、研究进展和优缺点,以期为此类药物的剂型改良提供研究思路及理论参考。
    Abstract: As one of the most important biological drugs, protein and peptide drugs have been increasingly used in the prevention, diagnosis and treatment of diseases in recent years. However, most of them need to be injected and lack of long-acting formulations, which brings many troubles to patients suffering from chronic diseases. In this review, we summarized the strategies for engineering long-acting formulations for proteins and peptides via preparation means, including extended-release injection, implant, oral preparations and transdermal drug delivery systems, and analyzed their release mechanisms, research advances, advantages and shortcomings, thereby providing potential approaches for promoting the formulation improvement of these drugs.
  • [1] Vaishya R, Khurana V, Patel S, et al. Long-term delivery of protein therapeutics[J]. Expert Opin Drug Deliv, 2015, 12(3):415-440.
    [2] Vaishya RD, Khurana V, Patel S, et al. Controlled ocular drug delivery with nanomicelles[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2014, 6(5):422-437.
    [3] Jia H, Guo Y, Song X, et al. Elimination of N-glycosylation by site mutation further prolongs the half-life of IFN-alpha/Fc fusion proteins expressed in Pichia pastoris[J]. Microb Cell Fact, 2016, 15(1):209.
    [4] Czajkowsky DM, Hu J, Shao Z, et al. Fc-fusion proteins: new developments and future perspectives[J]. EMBO Mol Med, 2012, 4(10):1015-1028.
    [5] Kim D, Jeon H, Ahn S, et al. An approach for half-life extension and activity preservation of an anti-diabetic peptide drug based on genetic fusion with an albumin-binding aptide[J]. J Control Release, 2017, 256:114-120.
    [6] Li CY, Huang WL, Qian H. Advances in the research of long-acting strategy of insulin and GLP-1 analogs[J]. J China Pharm Univ(中国药科大学学报), 2018, 49(6):660-670.
    [7] Deyle K, Kong XD, Heinis C. Phage selection of cyclic peptides for application in research and drug development[J]. Acc Chem Res, 2017, 50(8):1866-1874.
    [8] Kim D, MacConell L, Zhuang D, et al. Effects of once-weekly dosing of a long-acting release formulation of exenatide on glucose control and body weight in subjects with type 2 diabetes[J]. Diabetes Care, 2007, 30(6):1487-1493.
    [9] Oh YJ, Lee JW, Seo JY, et al. Preparation of budesonide-loaded porous PLGA microparticles and their therapeutic efficacy in a murine asthma model[J]. J Control Release, 2011, 150(1):56-62.
    [10] Zhang Y, Wischke C, Mittal S, et al. Design of controlled release PLGA microspheres for hydrophobic fenretinide[J]. Mol Pharm, 2016, 13(8):2622-2630.
    [11] Rosa GD, Iommelli R, La Rotonda MI, et al. Influence of the co-encapsulation of different non-ionic surfactants on the properties of PLGA insulin-loaded microspheres[J]. J Control Release, 2000, 69(2):283-295.
    [12] Bae SE, Son JS, Park K, et al. Fabrication of covered porous PLGA microspheres using hydrogen peroxide for controlled drug delivery and regenerative medicine[J]. J Control Release, 2009, 133(1):37-43.
    [13] Casalini T, Rossi F, Lazzari S, et al. Mathematical modeling of PLGA microparticles: from polymer degradation to drug release[J]. Mol Pharm, 2014, 11(11):4036-4048.
    [14] Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices[J]. Biomaterials, 2000, 21(23):2475-2490.
    [15] Díaz E, Puerto I, Ribeiro S, et al. The influence of copolymer composition on PLGA/nHA Scaffolds' cytotoxicity and in vitro degradation[J]. Nanomaterials (Basel), 2017, 7(7): 173.
    [16] Yang S, Yuan W, Jin T. Formulating protein therapeutics into particulate forms[J]. Expert Opin Drug Deliv, 2009, 6(10):1123-1133.
    [17] Wu JZ, Williams GR, Li HY, et al. Insulin-loaded PLGA microspheres for glucose-responsive release[J]. Drug Deliv, 2017, 24(1):1513-1525.
    [18] Jain A, Kunduru KR, Basu A, et al. Injectable formulations of poly(lactic acid) and its copolymers in clinical use[J]. Adv Drug Deliv Rev, 2016, 107:213-227.
    [19] Guo J, Sun X, Yin H, et al. Chitosan microsphere used as an effective system to deliver a linked antigenic peptides vaccine protect mice against acute and chronic toxoplasmosis[J]. Front Cell Infect Microbiol, 2018, 8:163.
    [20] Mantripragada S. A lipid based depot (DepoFoam? technology) for sustained release drug delivery[J]. Prog Lipid Res, 2002, 41(5):392-406.
    [21] Bulbake U, Doppalapudi S, Kommineni N, et al. Liposomal formulations in clinical use: an updated review[J]. Pharmaceutics, 2017, 9(2): 12.
    [22] Lewis KA, Goldyn AK, West KW, et al. A single histrelin implant is effective for 2 years for treatment of central precocious puberty[J]. J Pediatr, 2013, 163(4):1214-1216.
    [23] Moore HC, Unger JM, Phillips KA, et al. Goserelin for ovarian protection during breast-cancer adjuvant chemotherapy[J]. N Engl J Med, 2015, 372(10):923-932.
    [24] Zhao YN, Xu X, Wen N, et al. A drug carrier for sustained Zero-order release of peptide therapeutics[J]. Sci Rep, 2017, 7(1):5524.
    [25] Jeong JW, McCall JG, Shin G, et al. Wireless optofluidic systems for programmable in vivo Pharmacology and optogenetics[J]. Cell, 2015, 162(3):662-674.
    [26] Farra R, Sheppard NF, McCabe L, et al. First-in-human testing of a wirelessly controlled drug delivery microchip[J]. Sci Transl Med, 2012, 4(122):122ra121.
    [27] Parent M, Clarot I, Gibot S, et al. One-week in vivo sustained release of a peptide formulated into in situ forming implants[J]. Int J Pharm, 2017, 521(1/2):357-360.
    [28] Brodbeck KJ, DesNoyer JR, McHugh AJ. Phase inversion dynamics of PLGA solutions related to drug delivery. Part II. The role of solution thermodynamics and bath-side mass transfer[J]. J Control Release, 1999, 62(3):333-344.
    [29] Huang LP, Li YN, Du YA, et al. Mild photothermal therapy potentiates anti-PD-L1 treatment for immunologically cold tumors via an all-in-one and all-in-control strategy[J]. Nat Commun, 2019, 10(1):4871.
    [30] Ruel-Gariepy E, Leroux JC. In situ-forming hydrogels—review of temperature-sensitive systems[J]. Eur J Pharm Biopharm, 2004, 58(2):409-426.
    [31] Agarwal P, Rupenthal ID. Injectable implants for the sustained release of protein and peptide drugs[J]. Drug Discov Today, 2013, 18(7):337-349.
    [32] Singh NK, Lee DS. In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery[J]. J Control Release, 2014, 193:214-227.
    [33] Liu Y, Chen X, Li S, et al. Calcitonin-loaded thermosensitive hydrogel for long-term antiosteopenia therapy[J]. ACS Appl Mater Interfaces, 2017, 9(28):23428-23440.
    [34] Xu YR, Shen Y, Xiong YR, et al. Synthesis, characterization, biodegradability and biocompatibility of a temperature-sensitive PBLA-PEG-PBLA hydrogel as protein delivery system with low critical gelation concentration[J]. Drug Dev Ind Pharm, 2014, 40(9):1264-1275.
    [35] Feng Z, Zhao J, Li Y, et al. Temperature-responsive in situ nanoparticle hydrogels based on hydrophilic pendant cyclic ether modified PEG-PCL-PEG[J]. Biomater Sci, 2016, 4(10):1493-1502.
    [36] Lai MC, Chang KC, Hsu SC, et al. In situ gelation of PEG-PLGA-PEG hydrogels containing high loading of hydroxyapatite: in vitro and in vivo characteristics[J]. Biomed Mater, 2014, 9(1):015011.
    [37] Bobbala S, Tamboli V, McDowell A, et al. Novel injectable pentablock copolymer based thermoresponsive hydrogels for sustained release vaccines[J]. AAPS J, 2016, 18(1):261-269.
    [38] Wang C, Wang J, Zhang X, et al. In situ formed reactive oxygen species-responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy[J]. Sci Transl Med, 2018, 10(429):eaan3682.
    [39] Zhao Y, Cui Z, Liu B, et al. An injectable strong hydrogel for bone reconstruction[J]. Adv Healthc Mater, 2019, 8(17):e1900709.
    [40] Nguyen NT, Nguyen LV, Tran NM, et al. The effect of oxidation degree and volume ratio of components on properties and applications of in situ cross-linking hydrogels based on chitosan and hyaluronic acid[J]. Mater Sci Eng C Mater Biol Appl, 2019, 103:109670.
    [41] Criado-Gonzalez M, Corbella L, Senger B, et al. Photoresponsive nanometer-scale iron alginate hydrogels: a study of gel-sol transition using quartz crystal microbalance[J]. Langmuir, 2019, 35(35):11397-11405.
    [42] Gupta V, Hwang BH, Doshi N, et al. Delivery of exenatide and insulin using mucoadhesive intestinal devices[J]. Ann Biomed Eng, 2016, 44(6):1993-2007.
    [43] Gupta V, Hwang BH, Lee JH, et al. Mucoadhesive intestinal devices for oral delivery of salmon calcitonin[J]. J Control Release, 2013, 172(3):753-762.
    [44] Castro PM, Fonte P, Sousa F, et al. Oral films as breakthrough tools for oral delivery of proteins/peptides[J]. J Control Release, 2015, 211:63-73.
    [45] Salvioni L, Fiandra L, Del CMD, et al. Oral delivery of insulin via polyethylene imine-based nanoparticles for colonic release allows glycemic control in diabetic rats[J]. Pharmacol Res, 2016, 110:122-130.
    [46] Zhao XH, Shan C, Zu YG, et al. Preparation, characterization, and evaluation in vivo of Ins-SiO2-HP55 (insulin-loaded silica coating HP55) for oral delivery of insulin[J]. Int J Pharm, 2013, 454(1):278-284.
    [47] Chuang EY, Lin KJ, Lin PY, et al. Self-assembling bubble carriers for oral protein delivery[J]. Biomaterials, 2015, 64:115-124.
    [48] Leonaviciute G, Bernkop-Schnurch A. Self-emulsifying drug delivery systems in oral (poly)peptide drug delivery[J]. Expert Opin Drug Deliv, 2015, 12(11):1703-1716.
    [49] Kusamori K, Katsumi H, Sakai R, et al. Development of a drug-coated microneedle array and its application for transdermal delivery of interferon alpha[J]. Biofabrication, 2016, 8(1):015006.
    [50] Lau S, Fei J, Liu H, et al. Multilayered pyramidal dissolving microneedle patches with flexible pedestals for improving effective drug delivery[J]. J Control Release, 2017, 265:113-119.
    [51] van der Maaden K, Heuts J, Camps M, et al. Hollow microneedle-mediated micro-injections of a liposomal HPV E743-63 synthetic long peptide vaccine for efficient induction of cytotoxic and T-helper responses[J]. J Control Release, 2018, 269:347-354.
    [52] Qiu YQ, Qin GJ, Zhang SH, et al. Novel lyophilized hydrogel patches for convenient and effective administration of microneedle-mediated insulin delivery[J]. Int J Pharm, 2012, 437(1):51-56.
    [53] Seong KY, Seo MS, Hwang DY, et al. A self-adherent, bullet-shaped microneedle patch for controlled transdermal delivery of insulin[J]. J Control Release, 2017, 265:48-56.
    [54] Chen MC, Huang SF, Lai KY, et al. Fully embeddable chitosan microneedles as a sustained release depot for intradermal vaccination[J]. Biomaterials, 2013, 34(12):3077-3086.
    [55] Kim MY, Jung BK, Park JH. Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin[J]. Biomaterials, 2012, 33(2):668-678.
    [56] Ganesan P, Choi DK. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy[J]. Int J Nanomedicine, 2016, 11:1987-2007.
    [57] Wu PS, Li YS, Kuo YC, et al. Preparation and evaluation of novel transfersomes combined with the natural antioxidant resveratrol[J]. Molecules, 2019, 24(3):600.
    [58] Carter P, Narasimhan B, Wang Q. Biocompatible nanoparticles and vesicular systems in transdermal drug delivery for various skin diseases[J]. Int J Pharm, 2019, 555:49-62.
    [59] Desai P, Patlolla RR, Singh M. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery[J]. Mol Membr Biol, 2010, 27(7):247-259.
  • 期刊类型引用(8)

    1. 刘健弘,张欣橦,李颖娴,杨展,符艺,周瑜芳. 药物缓释体系的研究进展. 广东化工. 2024(15): 90-92+45 . 百度学术
    2. 郑丽君,刘玲,张向荣. 脂质体在乳品中的应用. 中国药剂学杂志(网络版). 2023(01): 34-48 . 百度学术
    3. 郭文娣,彭玉帅,许卉,陈华. 脂质体制剂制备工艺及质量控制研究进展. 药物分析杂志. 2023(01): 61-69 . 百度学术
    4. 柳宇红,姜宇,郝贵周,刘善奎. 挤出法制备卡巴他赛脂质体的工艺优化. 药学研究. 2023(04): 243-246+284 . 百度学术
    5. 吴灿,关延彬,贾永艳. 药剂学课程思政探索——以“脂质体”为例. 中国教育技术装备. 2023(18): 72-74 . 百度学术
    6. 毛欣亮,邓惠林,张浩,李吉平,蔡德富,樊丽,孙珈,岳丽玲,潘思文,温宪春. 共载紫草素和盐酸阿霉素pH敏感脂质体的制备及理化性质评价. 齐齐哈尔医学院学报. 2023(23): 2201-2207 . 百度学术
    7. 蔡成龙,闫雪生,于蓓蓓,孙丹丹. 透明质酸修饰茯苓皮总三萜脂质体制备与表征研究. 辽宁中医药大学学报. 2022(05): 50-55 . 百度学术
    8. 张艺,杭太俊,宋敏. 载药脂质体包封率测定方法的研究进展. 中国药科大学学报. 2021(02): 245-252 . 本站查看

    其他类型引用(12)

计量
  • 文章访问数:  438
  • HTML全文浏览量:  99
  • PDF下载量:  1313
  • 被引次数: 20
出版历程
  • 收稿日期:  2019-11-08
  • 刊出日期:  2020-08-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭