• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

黄芪对小鼠心脑血管系统代谢稳态的影响

邓小颖, 杨旭萍, 刘佩芳, 张尊建, 黄寅

邓小颖, 杨旭萍, 刘佩芳, 张尊建, 黄寅. 黄芪对小鼠心脑血管系统代谢稳态的影响[J]. 中国药科大学学报, 2020, 51(4): 494-501. DOI: 10.11665/j.issn.1000-5048.20200416
引用本文: 邓小颖, 杨旭萍, 刘佩芳, 张尊建, 黄寅. 黄芪对小鼠心脑血管系统代谢稳态的影响[J]. 中国药科大学学报, 2020, 51(4): 494-501. DOI: 10.11665/j.issn.1000-5048.20200416
DENG Xiaoying, YANG Xuping, LIU Peifang, ZHANG Zunjian, HUANG Yin. Effect of Astragalus membranaceus on metabolic homeostasis of cardio-cerebrovascular system in mice[J]. Journal of China Pharmaceutical University, 2020, 51(4): 494-501. DOI: 10.11665/j.issn.1000-5048.20200416
Citation: DENG Xiaoying, YANG Xuping, LIU Peifang, ZHANG Zunjian, HUANG Yin. Effect of Astragalus membranaceus on metabolic homeostasis of cardio-cerebrovascular system in mice[J]. Journal of China Pharmaceutical University, 2020, 51(4): 494-501. DOI: 10.11665/j.issn.1000-5048.20200416

黄芪对小鼠心脑血管系统代谢稳态的影响

基金项目: 黑龙江省自然科学基金资助项目(No.QC2016109);药物质量与安全预警教育部重点实验室开放课题资助项目(No.DQCP2017MS02)

Effect of Astragalus membranaceus on metabolic homeostasis of cardio-cerebrovascular system in mice

Funds: This study was Foundation:supported by the Natural Science Foundation of Heilongjiang Province (No.QC2016109) and the Open Program of MOE Key Laboratory of Drug Quality Control and Pharmacovigilance (No.DQCP2017MS02)
  • 摘要: 研究中药黄芪对小鼠心脏、大脑及血液代谢稳态的影响,从代谢调控角度阐明黄芪“修心健脑”的作用机制。13只ICR雄性小鼠随机分为两组,分别连续10 d灌胃给予超纯水和黄芪水提液,采用液相色谱-质谱(LC-MS)和气相色谱-质谱(GC-MS)联用分析全面表征小鼠血清、心脏和脑组织代谢指纹图谱,结合多元统计分析与非参数检验筛选、鉴定差异代谢物,聚焦相关代谢通路。多元统计分析表明,与对照组相比,黄芪干预后小鼠机体的代谢轮廓变化显著,在血清、心脏、脑中分别鉴定出15、19和17个差异代谢物,其中差异代谢物棕榈酸和LysoPC(20∶3)为3种生物样本共有且变化趋势一致。代谢通路富集分析结果显示,氨基酸代谢、磷脂代谢、脂肪酸代谢和三羧酸循环等通路受到显著影响。研究结果显示,黄芪可能通过调节能量代谢、氨基酸代谢及脂代谢稳态发挥心脑血管保护作用。
    Abstract: To explore the effect of Astragalus membranaceus, a traditional Chinese medicine, on metabolic homeostasis of heart, brain and blood in mice, and to elucidate the cardio-cerebrovascular protective mechanisms of AR from the perspective of metabolic regulation. Thirteen ICR male mice were randomly divided into two groups which were intragastrically administered with ultrapure water and aqueous extract of Astragalus membranaceus for 10 consecutive days, respectively. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) were used to comprehensively characterize the metabolic profiles of serum, heart and brain tissues. Multivariate statistical analysis combined with nonparametric tests were applied to screen and identify different metabolites, and then the related metabolic pathways were uncovered. Multivariate statistical analysis showed that the metabolic profiles of serum, heart, and brain tissues of mice after Astragalus membranaceus intervention significantly changed compared with the control group. A total of 15, 19, and 17 metabolites were identified in serum, heart, and brain tissues, respectively, among which palmitic acid and LysoPC (20∶3) were screened out from all types of biological samples. The results of metabolic pathway enrichment analysis showed that amino acid metabolism, phospholipid metabolism, fatty acid metabolism and tricarboxylic acid cycle were significantly affected. Astragalus membranaceus may protect the cardio-cerebrovascular system by regulating the metabolic homeostasis of amino acids, lipids and energy.
  • [1] Liu P, Zhao H, Luo Y. Anti-aging implications of Astragalus membranaceus (Huangqi): a well-known Chinese tonic [J]. Aging Dis, 2017, 8(6): 868-886.
    [2] Li Y, Guo S, Zhu Y, et al. Comparative analysis of twenty-five compounds in different parts of Astragalus membranaceus var. mongholicus and Astragalus membranaceus by UPLC-MS/MS [J]. J Pharm Anal, 2019, 9(6): 392-399.
    [3] Fu J, Wang Z, Huang L, et al. Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus (Huangqi) [J]. Phytother Res, 2014, 28(9): 1275-1283.
    [4] Liu Y, Xu W, Xiong Y, et al. Evaluations of the effect of HuangQi against heart failure based on comprehensive echocardiography index and metabonomics [J]. Phytomedicine, 2018, 50(2): 5-12.
    [5] Dong Z, Zhao P, Xu M, et al. Astragaloside IV alleviates heart failure via activating PPARα to switch glycolysis to fatty acid beta-oxidation [J]. Sci Rep, 2017, 7(1): 2691-2699.
    [6] Shanzad M, Shabbir A, Wojcikowski K, et al. The antioxidant effects of Radix Astragali (Astragalus membranaceus and related species) in protecting tissues from injury and disease [J]. Curr Drug Targets, 2016, 17(12): 1331-1340.
    [7] Agyemang K, Han L, Liu E, et al. Recent advances in Astragalus membranaceus anti-diabetic research: pharmacological effects of its phytochemical constituents [J]. Evid Based Complement Alternat Med, 2013(65): 46-48.
    [8] Wang X, Wang Y, Hu JP, et al. Astragaloside IV, a natural PPARγ agonist, reduces Aβ production in Alzheimer's disease through inhibition of BACE1 [J]. Mol Neurobiol, 2017, 54(4): 2939-2949.
    [9] Yang Q, Zhang AH, Miao JH, et al. Metabolomics biotechnology, applications, and future trends: a systematic review [J]. RSC Advances, 2019, 9(64): 37245-37257.
    [10] Wu G, Zhang W, Li H. Application of metabolomics for unveiling the therapeutic role of traditional Chinese medicine in metabolic diseases [J]. J Ethnopharmacol, 2019, 242(11): 2057.
    [11] Wang M, Chen L, Liu D, et al. Metabolomics highlights pharmacological bioactivity and biochemical mechanism of traditional Chinese medicine [J]. Chem Biol Interact, 2017, 273(1): 33-41.
    [12] Han L, Wang P, Wang Y, et al. Rapid discovery of the potential toxic compounds in polygonum multiflorum by UHPLC-Q-Orbitrap-MS-based metabolomics and correlation analysis [J]. Front Pharmacol, 2019, 10(3):2-9.
    [13] Wang R, Yu Z, Herder C, et al. Novel biomarkers for pre-diabetes identified by metabolomics [J]. Mol Syst Biol, 2012, 8(6):15-21.
    [14] Frisardi V, Panza F, Seripa D, et al. Glycerophospholipids and glycerophospholipid-derived lipid mediators: a complex meshwork in Alzheimer's disease pathology [J]. Prog Lipid Res, 2011, 50(4): 313-330.
    [15] Lin J, Liu WT, Li W, et al. Plasma metabolic profiling of Alzheimer's disease by liquid chromatography/mass spectrometry [J]. Clin Biochem, 2010, 43(12): 992-997.
    [16] Wu Q, Zhang H, Dong X, et al. UPLC-Q-TOF/MS based metabolomic profiling of serum and urine of hyperlipidemic rats induced by high fat diet [J]. J Pharm Anal, 2014, 4(6): 360-367.
    [17] Song X, Wang J, Wang P, et al. (1)H NMR-based metabolomics approach to evaluate the effect of Xue-Fu-Zhu-Yu decoction on hyperlipidemia rats induced by high-fat diet [J]. J Pharm Biomed Anal, 2013, 78(79):202-210.
    [18] Liu YT, Jia HM, Chang X, et al. The metabolic disturbances of isoproterenol induced myocardial infarction in rats based on a tissue targeted metabonomics [J]. Mol Biosyst, 2013, 9(11): 2823-2834.
    [19] Chen T, Ni Y, Ma X, et al. Branched-chain and aromatic amino acid profiles and diabetes risk in Chinese populations [J]. Sci Rep, 2016, 6(20):59-64.
    [20] Ferrari F, Gornir A, Hoyer S, et al. Glutamate metabolism in cerebral mitochondria after ischemia and post-ischemic recovery during aging: relationships with brain energy metabolism [J]. J Neurochem, 2018, 146(4): 416-428.
    [21] Yu J, Kong L, Zhang A, et al. High-throughput metabolomics for discovering potential metabolite biomarkers and metabolic mechanism from the APPswe/PS1dE9 transgenic model of Alzheimer's disease [J]. J Proteome Res, 2017, 16(9): 3219-3228.
    [22] Fiandaca MS, Gross TJ, Johnosn TM, et al. Potential metabolomic linkage in blood between Parkinson's disease and traumatic brain injury [J]. Metabolites, 2018, 8(3):50-52.
    [23] Sasaki K. Nutrition and dopamine: an intake of tyrosine in royal jelly can affect the brain levels of dopamine in male honeybees (Apis mellifera L.) [J]. J Insect Physiol, 2016, 87(3): 45-52.
    [24] Yi L, Shi S, Wang Y, et al. Serum metabolic profiling reveals altered metabolic pathways in patients with post-traumatic cognitive impairments [J]. Sci Rep, 2016, 6(2): 13-20.
    [25] Li Y, Ju L, Hou Z, et al. Screening, verification, and optimization of biomarkers for early prediction of cardiotoxicity based on metabolomics [J]. J Proteome Res, 2015, 14(6): 2437-2445.
  • 期刊类型引用(1)

    1. 江晓烽,张娅婷,赵轩,田林霞,余娴. DC-SIGN靶向的载铜绿假单胞菌DNA疫苗纳米粒的构建及免疫效力评价. 中国药理学通报. 2024(11): 2184-2192 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  243
  • HTML全文浏览量:  4
  • PDF下载量:  342
  • 被引次数: 1
出版历程
  • 收稿日期:  2020-05-25
  • 刊出日期:  2020-08-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭