[1] |
Havrda M. The purpose of Galen's treatise on demonstration[J]. Early Sci Med, 2015, 20(3):265-287.
|
[2] |
Antoni MH, Dhabhar FS. The impact of psychosocial stress and stress management on immune responses in patients with cancer[J]. Cancer, 2019, 125(9):1417-1431.
|
[3] |
Jobling P, Pundavela J, Oliveira SM, et al. Nerve-cancer cell cross-talk: a novel promoter of tumor progression[J]. Cancer Res, 2015, 75(9):1777-1781.
|
[4] |
Beaulieu JM, Gainetdinov RR, Sibley DR. The physiology, signaling, and pharmacology of dopamine receptors[J]. Pharmacol Rev, 2011, 63(1):182-217.
|
[5] |
Nasi G, Ahmed T, Rasini E, et al. Dopamine inhibits human CD8+ Treg function through D1-like dopaminergic receptors[J]. J Neuroimmunol, 2019, 332:233-241.
|
[6] |
Wu XY, Zhang CX, Deng LC, et al. Overexpressed D2 dopamine receptor inhibits non-small cell lung cancer progression through inhibiting NF-κB signaling pathway[J]. Cellular Physiol Biochem, 2018, 48(6):2258-2272.
|
[7] |
Jandaghi P, Najafabadi HS, Bauer AS, et al. Expression of DRD2 is increased in human pancreatic ductal adenocarcinoma and inhibitors slow tumor growth in mice[J]. Gastroenterology, 2016, 151(6):1218-1231.
|
[8] |
Caragher SP, Shireman JM, Huang M, et al. Activation of dopamine receptor 2 prompts transcriptomic and metabolic plasticity in glioblastoma[J]. J Neurosci, 2019, 39(11):1982-1993.
|
[9] |
Mu J, Huang W, Tan Z, et al. Dopamine receptor D2 is correlated with gastric cancer prognosis[J]. Oncol Lett, 2017, 13(3):1223-1227.
|
[10] |
Weissenrieder JS, Neighbors JD, Mailman RB, et al. Cancer and the dopamine D2 receptor: a pharmacological perspective[J]. J Pharmacol Exp Ther, 2019, 370(1):111-126.
|
[11] |
Prabhu VV, Madhukar NS, Gilvary C, et al. Dopamine receptor D5 is a modulator of tumor response to dopamine receptor D2 antagonism[J]. Clin Cancer Res, 2019, 25(7):2305-2313.
|
[12] |
Sarkar C, Chakroborty D, Chowdhury UR, et al. Dopamine increases the efficacy of anticancer drugs in breast and colon cancer preclinical models[J]. Clin Cancer Res, 2008, 14(8):2502-2510.
|
[13] |
Asada M, Ebihara S, Numachi Y, et al. Reduced tumor growth in a mouse model of schizophrenia, lacking the dopamine transporter[J]. Int J Cancer, 2008, 123(3):511-518.
|
[14] |
Ganguly S, Basu B, Shome S, et al. Dopamine, by acting through its D2 receptor, inhibits insulin-like growth factor-I (IGF-I) -induced gastric cancer cell proliferation via up-regulation of Kruppel-like factor 4 through down-regulation of IGF-IR and AKT phosphorylation[J]. Am J Pathol, 2010, 177(6):2701-2707.
|
[15] |
Krizanova O, Babula P, Stress Pacak K., catecholaminergic system and cancer[J]. Stress, 2016, 19(4):419-428.
|
[16] |
Walker AK, Martelli D, Ziegler AI, et al. Circulating epinephrine is not required for chronic stress to enhance metastasis[J]. Psychoneuroendocrinol, 2019, 99:191-195.
|
[17] |
Chang A, Yeung S, Thakkar A, et al. Prevention of skin carcinogenesis by the blocker carvedilol[J]. Cancer Prevention Res, 2014, 8(1):27-36.
|
[18] |
Chang PY, Huang WY, Lin CL, et al. Propranolol reduces cancer risk: a population-based cohort study[J]. Medicine (Baltimore) , 2015, 94(27):e1097.
|
[19] |
Renz BW, Takahashi R, Tanaka T, et al. β2 Adrenergic-neurotrophin feedforward loop promotes pancreatic cancer[J]. Cancer Cell, 2018, 33(1):75-90.
|
[20] |
Mohammad-Zadeh LF, Moses L, Gwaltney-Brant SM. Serotonin: a review[J]. J Vet Pharmacol Ther, 2008, 31(3):187-199.
|
[21] |
Da Prada M, Picotti GB. Content and subcellular localization of catecholamines and 5-hydroxytryptamine in human and animal blood platelets: monoamine distribution between platelets and plasma[J]. Br J Pharmacol, 1979, 65(4):653-662.
|
[22] |
Nebigil CG, Choi DS, Dierich A, et al. Serotonin 2B receptor is required for heart development[J]. Proc Natl Acad Sci U S A, 2000, 97(17):9508-9513.
|
[23] |
Jiang SH, Li J, Dong FY, et al. Increased serotonin signaling contributes to the warburg effect in pancreatic tumor cells under metabolic stress and promotes growth of pancreatic tumors in mice[J]. Gastroenterology, 2017, 153(1):277-291.
|
[24] |
Snyder SH. A life of neurotransmitters[J]. Annu Rev Pharmacol Toxicol, 2017, 57(4):1-11.
|
[25] |
Zuo X, Chen Z, Cai J, et al. 5-Hydroxytryptamine receptor 1D aggravates hepatocellular carcinoma progression through FoxO6 in AKT-dependent and independent manners[J]. Hepatology, 2019, 69(5):2031-2047.
|
[26] |
Gautam J, Banskota S, Regmi SC, et al. Tryptophan hydroxylase 1 and 5-HT7 receptor preferentially expressed in triple-negative breast cancer promote cancer progression through autocrine serotonin signaling[J]. Molecular Cancer, 2016, 15(1):75.
|
[27] |
Liu Y, Zhang H, Wang Z, et al. 5-Hydroxytryptamine1a receptors on tumour cells induce immune evasion in lung adenocarcinoma patients with depression via autophagy/pSTAT3[J]. Eur J Cancer, 2019, 114:8-24.
|
[28] |
Ring H, Mendu SK, Shirazi-Fard S, et al. GABA maintains the proliferation of progenitors in the developing chick ciliary marginal zone and non-pigmented ciliary epithelium[J]. PLoS One, 2012, 7(5):e36874.
|
[29] |
Chen X, Cao Q, Liao R, et al. Loss of ABAT-mediated GABAergic system promotes basal-like breast cancer progression by activating Ca2+ -NFAT1 axis[J]. Theranostics, 2019, 9(1):34-47.
|
[30] |
Jiang SH, Zhu LL, Zhang M, et al. GABRP regulates chemokine signalling, macrophage recruitment and tumour progression in pancreatic cancer through tuning KCNN4-mediated Ca2+ signalling in a GABA-independent manner[J]. Gut, 2019, 68(11):1994-2006.
|
[31] |
Sung HY, Yang SD, Ju W, et al. Aberrant epigenetic regulation of GABRP associates with aggressive phenotype of ovarian cancer[J]. Exp Mol Med, 2017, 49(5):e335.
|
[32] |
Taylor RA, Watt MJ. Unsuspected protumorigenic signaling role for the oncometabolite GABA in advanced prostate cancer[J]. Cancer Res, 2019, 79(18):4580-4581.
|
[33] |
Xia S, He C, Zhu Y, et al. GABABR-induced EGFR transactivation promotes migration of human prostate cancer cells[J]. Mol Pharmacol, 2017, 92(3):265-277.
|
[34] |
Kanbara K, Otsuki Y, Watanabe M, et al. GABAB receptor regulates proliferation in the high-grade chondrosarcoma cell line OUMS-27 via apoptotic pathways[J]. BMC Cancer, 2018, 18(1):263.
|
[35] |
Hujber Z, Horvath G, Petovari G, et al. GABA, glutamine, glutamate oxidation and succinic semialdehyde dehydrogenase expression in human gliomas[J]. J Exp Clin Cancer Res, 2018, 37(1):271.
|
[36] |
Cerchio R, Chen S. Role of GPCRs in cancer[M]. GPCRs, 2020: 463-474.
|
[37] |
Zhang Z, Liu Y, Wang K, et al. Activation of type 4 metabotropic glutamate receptor promotes cell apoptosis and inhibits proliferation in bladder cancer[J]. J Cell Physiol, 2019, 234(3):2741-2755.
|
[38] |
Shah R, Singh SJ, Eddy K, et al. Concurrent targeting of glutaminolysis and metabotropic glutamate receptor 1 (GRM1) reduces glutamate bioavailability in GRM1+ melanoma[J]. Cancer Research, 2019, 79(8):1799-1809.
|
[39] |
Kaittanis C, Andreou C, Hieronymus H, et al. Prostate-specific membrane antigen cleavage of vitamin B9 stimulates oncogenic signaling through metabotropic glutamate receptors[J]. J Exp Med, 2018, 215(1):159-175.
|
[40] |
Palamiuc L, Emerling BM. PSMA brings new flavors to PI3K signaling: a role for glutamate in prostate cancer[J]. J Exp Med, 2018, 215(1):17-19.
|
[41] |
Wu CS, Lu YJ, Li HP, et al. Glutamate receptor, ionotropic, kainate 2 silencing by DNA hypermethylation possesses tumor suppressor function in gastric cancer[J]. Int J Cancer, 2010, 126(11):2542-2552.
|
[42] |
Zhawar VK, Kandpal RP, Athwal RS. Isoforms of ionotropic glutamate receptor GRIK2 induce senescence of carcinoma cells[J]. Cancer Genomics - Proteomics, 2018, 16(1):59-64.
|
[43] |
Chen J, Cheuk IWY, Shin VY, et al. Acetylcholine receptors: key players in cancer development[J]. Surg Oncol, 2019, 31:46-53.
|
[44] |
Pavlov VA, Ochani M, Yang LH, et al. Selective alpha7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis[J]. Crit Care Med, 2007, 35(4):1139-1144.
|
[45] |
Hsu CC, Tsai KY, Su YF, et al. α7-Nicotine acetylcholine receptor mediated nicotine induced cell survival and cisplatin resistance in oral cancer[J]. Archives Oral Biol, 2020, 111:104653.
|
[46] |
Sales ME, Espanol AJ, Salem AR, et al. Role of muscarinic acetylcholine receptors in breast cancer: Design of metronomic chemotherapy[J]. Curr Clin Pharmacol, 2019, 14(2):91-100.
|
[47] |
Thompson EG, Sontheimer H. Acetylcholine receptor activation as a modulator of glioblastoma invasion[J]. Cells, 2019, 8(10):1203.
|
[48] |
Sales ME. Muscarinic receptors as targets for metronomic therapy in breast cancer[J]. Curr Pharm Des, 2016, 22(14):2170-2177.
|
[49] |
Wang Z, Liu W, Wang C, et al. Acetylcholine promotes the self-renewal and immune escape of CD133+ thyroid cancer cells through activation of CD133-Akt pathway[J]. Cancer Lett, 2020, 471:116-124.
|
[50] |
Benarroch EE. Neuropeptide Y: its multiple effects in the CNS and potential clinical significance[J]. Neurology, 2009, 72(11):1016-1020.
|
[51] |
Tilan J, Kitlinska J. Neuropeptide Y (NPY) in tumor growth and progression: lessons learned from pediatric oncology[J]. Neuropeptides, 2016, 55:55-66.
|
[52] |
Zheng S, Yang L, Dai Y, et al. Screening and survival analysis of hub genes in gastric cancer based on bioinformatics[J]. J Comput Biol, 2019, 26(11):1316-1325.
|
[53] |
Alshalalfa M, Nguyen PL, Beltran H, et al. Transcriptomic and clinical characterization of neuropeptide Y expression in localized and metastatic prostate cancer: identification of novel prostate cancer subtype with clinical implications[J]. Eur Urol Oncol, 2019, 2(4):405-412.
|
[54] |
Mohammadpour H, Bucsek MJ, Hylander BL, et al. Depression stresses the immune response and promotes prostate cancer growth[J]. Clin Cancer Res, 2019, 25(8):2363-2365.
|
[55] |
Cheng Y, Tang XY, Li YX, et al. Depression-induced neuropeptide Y secretion promotes prostate cancer growth by recruiting myeloid cells[J]. Clin Cancer Res, 2019, 25(8):2621-2632.
|
[56] |
Zhang Y, Fang L, Zang Y, et al. Identification of core genes and key pathways via integrated analysis of gene expression and DNA methylation profiles in bladder cancer[J]. Medical Science Monitor, 2018, 24:3024-3033.
|
[57] |
Jensen LH, Olesen R, Petersen LN, et al. NPY gene methylation as a universal, longitudinal plasma marker for evaluating the clinical benefit from last-line treatment with regorafenib in metastatic colorectal cancer[J]. Cancers, 2019, 11(11):1649.
|