• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

基于网络药理学和分子对接技术研究抗601合剂的抗病毒抗炎作用机制

曾静霞, 周维, 姜彧腾, 薛春玲

曾静霞, 周维, 姜彧腾, 薛春玲. 基于网络药理学和分子对接技术研究抗601合剂的抗病毒抗炎作用机制[J]. 中国药科大学学报, 2020, 51(5): 577-583. DOI: 10.11665/j.issn.1000-5048.20200509
引用本文: 曾静霞, 周维, 姜彧腾, 薛春玲. 基于网络药理学和分子对接技术研究抗601合剂的抗病毒抗炎作用机制[J]. 中国药科大学学报, 2020, 51(5): 577-583. DOI: 10.11665/j.issn.1000-5048.20200509
ZENG Jingxia, ZHOU Wei, JIANG Yuteng, XUE Chunling. Antiviral and anti-inflammatory mechanism of Anti-601 Mixture based on network pharmacology and molecular docking[J]. Journal of China Pharmaceutical University, 2020, 51(5): 577-583. DOI: 10.11665/j.issn.1000-5048.20200509
Citation: ZENG Jingxia, ZHOU Wei, JIANG Yuteng, XUE Chunling. Antiviral and anti-inflammatory mechanism of Anti-601 Mixture based on network pharmacology and molecular docking[J]. Journal of China Pharmaceutical University, 2020, 51(5): 577-583. DOI: 10.11665/j.issn.1000-5048.20200509

基于网络药理学和分子对接技术研究抗601合剂的抗病毒抗炎作用机制

Antiviral and anti-inflammatory mechanism of Anti-601 Mixture based on network pharmacology and molecular docking

  • 摘要: 通过网络药理学和分子对接技术研究中药复方制剂抗601合剂抗病毒抗炎的潜在作用机制。借助中药系统药理学数据库和分析平台(TCMSP)检索抗601合剂中的黄芪、黄柏、大黄、板蓝根、金银花的化学成分和作用靶点。通过UniProt数据库查询靶点对应的基因,进而运用Cytoscape 3.7.2建立药材-化合物-靶点(基因)网络,再通过Webgestalt行功能富集分析和京都基因与基因组百科全书(KEGG)通路富集分析,预测其抗病毒、抗炎作用机制。药材-化合物-靶点(基因)网络包含药材5个、化合物100个、靶点207个。功能富集分析得到基因本体(GO)条目717个(P≤0.05),其中生物过程(BP)条目240个,细胞组成(CC)条目240个,分子功能(MF)条目237个。KEGG通路富集筛选得到209条信号通路(P≤0.05)。分子对接技术显示抗601合剂的活性成分豆甾醇、槲皮素、木犀草素、刺槐黄素、β-谷甾醇、山柰酚等与前列腺素内过氧化物合酶2(PTGS2)靶点的亲和力较强,可能通过PTGS2靶点调控晚期糖基化终产物及其受体(AGE-RAGE)信号通路、IL-17信号通路、肿瘤坏死因子(TNF)信号通路等多种通路,从而发挥抗病毒、抗炎作用。
    Abstract: The potential antiviral and anti-inflammatory mechanism of Anti-601 Mixture, a traditional Chinese medicine compound preparation, was studied by network pharmacology and molecular docking. The chemical constituents and targets of astragali radix, phellodendri chinensis cortex, rhei radix et rhizome, isatidis radix and lonicerae japonicae flos in Anti-601 Mixture were searched by Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The genes corresponding to the target were searched through the UniProt database, and the drug-compound-target (gene) network was constructed by Cytoscape 3.7.2. Then the functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted through Webgestalt to predict the mechanism. The network of drug-compound-target (gene) contained 5 drugs, 100 compounds and 207 targets. Functional enrichment analysis resulted in 717 GO items (P≤0.05), among which 240 were biological process (BP) items, 240 were cell composition (CC) items, and 237 were molecular function (MF) items. The 209 signaling pathways were obtained by enrichment screening of KEGG pathway (P≤0.05). Molecular docking showed that the active ingredients of Anti-601 Mixture, such as Stigmasterol, quercetin, luteolin, acacetin, β-sitosterol, kaempferol,had strong affinity with PTGS2 target. Active compounds in Anti-601 Mixture may regulate multiple signaling pathways including advanced glycation end products and its receptor (AGE-RAGE), IL-17, tumor necrosis factor (TNF) through target of prostaglandin-endoperoxidase synthase 2(PTGS2), thus playing an antiviral and anti-inflammatory role.
  • [1] . Nat Biotechnol,2007,25(10):1110?1111.
    [2] Zhang R,Zhu X,Bai H,et al. Network pharmacology databases for traditional Chinese medicine:review and assessment[J]. Front Pharmacol,2019,10:123.
    [3] Ru J,Li P,Wang J,et al. TCMSP:a database of systems pharmacology for drug discovery from herbal medicines[J]. J Cheminform,2014,6:13.
    [4] Trott O,Olson AJ. AutoDock Vina:improving the speed and accuracy of docking with a new scoring function,efficient optimization,and multithreading[J]. J Comput Chem,2010,31(2):455?461.
    [5] Oliveros JC. Venny. An interactive tool for comparing lists with Venn''''s diagrams[EB/OL]. https://bioinfogp.cnb.csic.es/tools/venny/index.html.
    [6] Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia:part1(中华人民共和国药典:一部)[S].Beijing:China Medical Science Press,2005:1537
    [7] National Health Commission of the People''''s Republic of China. COVID-19 Diagnosis and Treatment Protocol (Trial version 6)[EB/OL].[2020-02-19].http://www.nhc.gov.cn/yzygj/s7653p/202002/8334a8326dd94d329df351d7da8aefc2.shtml.
    [8] Croft M,Benedict CA,Ware CF. Clinical targeting of the TNF and TNFR superfamilies[J]. Nat Rev Drug Discov,2013,12(2):147?168.
    [9] Luo Y,Zheng SG. Hall of fame among pro-inflammatory cytokines:interleukin-6 gene and its transcriptional regulation mechanisms[J]. Front Immunol,2016,7:604.
    [10] Wendt T,Tanji N,Guo J,et al. Glucose,glycation,and RAGE:implications for amplification of cellular dysfunction in diabetic nephropathy[J]. J Am Soc Nephrol,2003,14(5):1383?1395.
    [11] Liu X,Sun S,Liu D. IL-17D:a less studied cytokine of IL-17 family[J]. Int Arch Allergy Immunol,2020,181(8):618?623.
    [12] Pappu R,Ramirez-Carrozzi V,Sambandam A. The interleukin-17 cytokine family:critical players in host defence and inflammatory diseases[J]. Immunology,2011,134(1):8?16.
    [13] Ohnishi E,Bannai H. Quercetin potentiates TNF-induced antiviral activity[J]. Antiviral Res,1993,22(4):327?331.
    [14] Suganthy N,Devi KP,Nabavi SF,et al. Bioactive effects of quercetin in the central nervous system:focusing on the mechanisms of actions[J]. Biomed Pharmacother,2016,84:892?908.
    [15] Arredondo F,Echeverry C,Abin-Carriquiry JA,et al. After cellular internalization,quercetin causes Nrf2 nuclear translocation,increases glutathione levels,and prevents neuronal death against an oxidative insult[J]. Free Radic Biol Med,2010,49(5):738?747.
    [16] Zhang HN,Zhou YF,Liu JB,et al. Exploring protective effects and mechanisms of quercetin on liver injury based on both NF-κB and Nrf2 signaling pathways[J]. Acta Agric Boreali - Occidentalis Sin(西北农业学报),2020,29(1):143?149.
    [17] Wu Y,Kim Y,Wu J,et al. Effects of wogonin on inflammation-related factors in alveolar macrophages infected with influenza virus[J]. Chin J Pathophysiol(中国病理生理杂志),2011,27(3):533?538.
    [18] Ren XD,Fu W,Zhang XY,et al. Progress in research of the natural product wogonin[J]. Chin J New Drugs,2011,20(9):777?784.
    [19] Fang WJ,Zhou XP,Wang JK,et al. Wogonin mitigates intervertebral disc degeneration through the Nrf2/ARE and MAPK signaling pathways[J]. Int Immunopharmacol,2018,65:539?549.
    [20] Wang SJ,Zhao JK,Ren S,et al. Wogonin affects proliferation and the energy metabolism of SGC-7901 and A549 cells[J]. Exp Ther Med,2019,17(1):911?918.
    [21] Deng DY,Gu LG,Liu XT,et al. Luteolin''''s intervention effect and its mechanism of apoptosis induced by H1N1 in vitro[J]. China J Tradit Chin Med Pharm(中华中医药杂志),2017,32(4):1524?1527.
    [22] Xiao ZB,Liu XL,Cheng RQ,et al. Influence of β-sitosterol on gastric mucosal side effect induced by aspirin and its pharmacological functions[J]. Chin J Exp Tradit Med Formulae(中国实验方剂学杂志),2016,22(1):148?152.
    [23] Feng SM,Ning K,Shao P,et al. Research on the β-sitosterol and stigmasterol therapeutic effect of acute colitis in mice[J]. J Chin Cereals Oils Assoc(中国粮油学报),2018,33(12):80?86,94.
    [24] Jiang MC,Wang SC,Xu QY. Research progress of Baicalein''''s antiviral effect[J]. Jilin J Tradit Chin Med(吉林中医药),2016,36(7):753?756.
计量
  • 文章访问数:  282
  • HTML全文浏览量:  3
  • PDF下载量:  621
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-02
  • 修回日期:  2020-10-13
  • 刊出日期:  2020-10-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭