• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

SLC13A5作为代谢性疾病潜在药物作用靶点的研究进展

牛群, 孙秋爽, 邱志霞, 黄芳

牛群, 孙秋爽, 邱志霞, 黄芳. SLC13A5作为代谢性疾病潜在药物作用靶点的研究进展[J]. 中国药科大学学报, 2020, 51(5): 607-613. DOI: 10.11665/j.issn.1000-5048.20200513
引用本文: 牛群, 孙秋爽, 邱志霞, 黄芳. SLC13A5作为代谢性疾病潜在药物作用靶点的研究进展[J]. 中国药科大学学报, 2020, 51(5): 607-613. DOI: 10.11665/j.issn.1000-5048.20200513
NIU Qun, SUN Qiushuang, QIU Zhixia, HUANG Fang. Progress of SLC13A5 as a potential pharmacological target of metabolic diseases[J]. Journal of China Pharmaceutical University, 2020, 51(5): 607-613. DOI: 10.11665/j.issn.1000-5048.20200513
Citation: NIU Qun, SUN Qiushuang, QIU Zhixia, HUANG Fang. Progress of SLC13A5 as a potential pharmacological target of metabolic diseases[J]. Journal of China Pharmaceutical University, 2020, 51(5): 607-613. DOI: 10.11665/j.issn.1000-5048.20200513

SLC13A5作为代谢性疾病潜在药物作用靶点的研究进展

Progress of SLC13A5 as a potential pharmacological target of metabolic diseases

  • 摘要: 溶质载体超家族(solute carrier,SLC)由400多个转运蛋白组成,它们介导离子、核苷酸、糖以及其他外源和内源性物质跨生物膜的流入和流出。现已有研究证实超过80种SLC载体蛋白与人类某些疾病有关,且有超过30种SLC载体蛋白被作为潜在的药物靶点。SLC13A5介导柠檬酸等物质的跨膜转运,后者与脂质从头合成(de novo lipid synthesis,DNL)相关。越来越多的研究发现,SLC13A5与肥胖、胰岛素抵抗和非酒精性脂肪肝病(NAFLD)等代谢性疾病密切相关。目前,针对脂质代谢紊乱引起的代谢性疾病尤其是NAFLD尚无临床治疗特效药。SLC13A5作为一个具有极大开发潜力的靶点,研究其参与代谢性疾病发生、发展过程的分子机制以及进行药物设计与开发意义重大。因此,将SLC13A5对代谢调节的影响以及其作为治疗代谢性疾病潜在靶点的研究进展做一综述,旨在为代谢性疾病相关药物的研究与开发提供必要的参考。
    Abstract: The solute carrier (SLC) consists of more than 400 transport proteins mediating the influx and efflux of ions, nucleotides, sugars and other exogenous and endogenous substances across biological membranes. Over 80 SLC carrier proteins have been reported to be closely associated with human diseases, in which more than 30 SLC proteins have been regarded as the potential drug targets. SLC13A5 mediates transmembrane transport of substances such as citrate, which is connected with de novo lipid synthesis (DNL). Studies have found that SLC13A5 is related to metabolic diseases such as obesity, insulin resistance (IR), non-alcoholic fatty liver disease (NAFLD). At present, there is no specific drug for clinical treatment of metabolic diseases caused by lipid metabolism disorders, especially NAFLD. Therefore, this paper summarizes the effect of SLC13A5 on metabolic regulation and its potential as a pharmacological target for metabolic diseases treatment, aiming to provide a reference for the research and development of drugs related to metabolic diseases.
  • [1] . Am J Hum Biol,2012,24(2):101?106.
    [2] von Loeffelholz C,Lieske S,Neusch?fer-Rube F,et al. The human longevity gene homolog INDY and interleukin-6 interact in hepatic lipid metabolism[J]. Hepatology,2017,66(2):616?630.
    [3] Birkenfeld AL,Lee HY,Guebre-Egziabher F,et al. Deletion of the mammalian INDY homolog mimics aspects of dietary restriction and protects against adiposity and insulin resistance in mice[J]. Cell Metab,2011,14(2):184?195.
    [4] Huard K,Brown J,Jones JC,et al. Discovery and characterization of novel inhibitors of the sodium-coupled citrate transporter (NaCT or SLC13A5)[J]. Sci Rep,2015,5:17391.
    [5] Willmes DM,Birkenfeld AL. The role of INDY in metabolic regulation[J]. Comput Struct Biotechnol J,2013,6:e201303020.
    [6] Lee S,Kesby JP,Muslim MD,et al. Hyperserotonaemia and reduced brain serotonin levels in NaS1 sulphate transporter null mice[J]. Neuroreport,2007,18(18):1981?1985.
    [7] Lee S,Dawson PA,Hewavitharana AK,et al. Disruption of NaS1 sulfate transport function in mice leads to enhanced acetaminophen-induced hepatotoxicity[J]. Hepatology,2006,43(6):1241?1247.
    [8] Dawson PA,Richard K,Perkins A,et al. Nutrient sulfate supply from mother to fetus:placental adaptive responses during human and animal gestation[J]. Placenta,2017,54:45?51.
    [9] Barnes SK,Eiby YA,Lee S,et al. Structure,organization and tissue expression of the pig SLC13A1 and SLC13A4 sulfate transporter genes[J]. Biochem Biophys Rep,2017,10:215?223.
    [10] Hamm LL,Hering-Smith KS. Pathophysiology of hypocitraturic nephrolithiasis[J]. Endocrinol Metab Clin North Am,2002,31(4):885?893,viii.
    [11] Bhutia YD,Kopel JJ,Lawrence JJ,et al. Plasma membrane Na?-coupled citrate transporter (SLC13A5) and neonatal epileptic encephalopathy[J]. Molecules,2017,22(3):E378.
    [12] Markovich D. Na+-sulfate cotransporter SLC13A1[J]. Pflugers Arch,2014,466(1):131?137.
    [13] Breljak D,Ljubojevi? M,Hagos Y,et al. Distribution of organic anion transporters NaDC3 and OAT1-3 along the human nephron[J]. Am J Physiol Renal Physiol,2016,311(1):F227?F238.
    [14] Zhang Z,Aung ZT,Simmons DG,et al. Molecular analysis of sequence and splice variants of the human SLC13A4 sulfate transporter[J]. Mol Genet Metab,2017,121(1):35?42.
    [15] Willmes DM,Kurzbach A,Henke C,et al. The longevity gene INDY (I''''m Not Dead Yet) in metabolic control:potential as pharmacological target[J]. Pharmacol Ther,2018,185:1?11.
    [16] Irizarry AR,Yan GR,Zeng QQ,et al. Defective enamel and bone development in sodium-dependent citrate transporter (NaCT) Slc13a5 deficient mice[J]. PLoS One,2017,12(4):e0175465.
    [17] Williams NC,O''''Neill LAJ. A role for the Krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation[J]. Front Immunol,2018,9:141.
    [18] Gregolin C,Ryder E,Kleinschmidt AK,et al. Molecular characteristics of liver acetyl CoA carboxylase[J]. Proc Natl Acad Sci U S A,1966,56(1):148?155.
    [19] Ros S,Schulze A. Balancing glycolytic flux:the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism[J]. Cancer Metab,2013,1(1):8.
    [20] Fu JY,Kemp RG. Activation of muscle fructose 1,6-diphosphatase by creatine phosphate and citrate[J]. J Biol Chem,1973,248(3):1124?1125.
    [21] Poolsri WA,Phokrai P,Suwankulanan S,et al. Combination of mitochondrial and plasma membrane citrate transporter inhibitors inhibits de novo lipogenesis pathway and triggers apoptosis in hepatocellular carcinoma cells[J]. Biomed Res Int,2018,2018:3683026.
    [22] Nielsen TT. Plasma citrate in relation to glucose and free fatty acid metabolism in man[J]. Dan Med Bull,1983,30(6):357-378.
    [23] Wang PY,Neretti N,Whitaker R,et al. Long-lived Indy and calorie restriction interact to extend life span[J]. Proc Natl Acad Sci U S A,2009,106(23):9262-9267.
    [24] Martinez-Beamonte R,Navarro MA,Guillen N,et al. Postprandial transcriptome associated with virgin olive oil intake in rat liver[J]. Front Biosci (Elite Ed),2011,3:11-21.
    [25] Etcheverry A,Aubry M,de Tayrac M,et al. DNA methylation in glioblastoma:impact on gene expression and clinical outcome[J]. BMC Genomics,2010,11:701.
    [26] Neusch?fer-Rube F,Lieske S,Kuna M,et al. The mammalian INDY homolog is induced by CREB in a rat model of type 2 diabetes[J]. Diabetes,2014,63(3):1048?1057.
    [27] Neusch?fer-Rube F,Schraplau A,Schewe B,et al. Arylhydrocarbon receptor-dependent mIndy (Slc13a5) induction as possible contributor to benzo[a]Pyrene-induced lipid accumulation in hepatocytes[J]. Toxicology,2015,337:1?9.
    [28] Li LH,Li HS,Garzel B,et al. SLC13A5 is a novel transcriptional target of the pregnane X receptor and sensitizes drug-induced steatosis in human liver[J]. Mol Pharmacol,2015,87(4):674?682.
    [29] Brachs S,Winkel AF,Tang H,et al. Inhibition of citrate cotransporter Slc13a5/mINDY by RNAi improves hepatic insulin sensitivity and prevents diet-induced non-alcoholic fatty liver disease in mice[J]. Mol Metab,2016,5(11):1072?1082.
    [30] Pesta DH,Perry RJ,Guebre-Egziabher F,et al. Prevention of diet-induced hepatic steatosis and hepatic insulin resistance by second generation antisense oligonucleotides targeted to the longevity gene mIndy (Slc13a5)[J]. Aging (Albany NY),2015,7(12):1086?1093.
    [31] Li ZH,Li DC,Choi EY,et al. Silencing of solute carrier family 13 member 5 disrupts energy homeostasis and inhibits proliferation of human hepatocarcinoma cells[J]. J Biol Chem,2017,292(33):13890?13901.
    [32] Sun JK,Aluvila S,Kotaria R,et al. Mitochondrial and plasma membrane citrate transporters:discovery of selective inhibitors and application to structure/function analysis[J]. Mol Cell Pharmacol,2010,2(3):101?110.
    [33] Pajor AM,de Oliveira CA,Song K,et al. Molecular basis for inhibition of the Na+/citrate transporter NaCT (SLC13A5) by dicarboxylate inhibitors[J]. Mol Pharmacol,2016,90(6):755?765.
    [34] Huard K,Gosset JR,Montgomery JI,et al. Optimization of a dicarboxylic series for in vivo inhibition of citrate transport by the solute carrier 13 (SLC13) family[J]. J Med Chem,2016,59(3):1165?1175.
    [35] Rives ML,Shaw M,Zhu B,et al. State-dependent allosteric inhibition of the human SLC13A5 citrate transporter by hydroxysuccinic acids,PF-06649298 and PF-06761281[J]. Mol Pharmacol,2016,90(6):766?774.
  • 期刊类型引用(1)

    1. 孙秋爽,郭雅婷,庄玉,黄芳,邱志霞. 姜黄素改善非酒精性脂肪性肝病的研究进展. 南京中医药大学学报. 2021(04): 625-631 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  547
  • HTML全文浏览量:  16
  • PDF下载量:  823
  • 被引次数: 4
出版历程
  • 收稿日期:  2020-02-22
  • 修回日期:  2020-09-14
  • 刊出日期:  2020-10-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭