• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

肿瘤的近红外光免疫治疗研究进展

李芳, 辛俊勃, 施秦, 毛成琼

李芳, 辛俊勃, 施秦, 毛成琼. 肿瘤的近红外光免疫治疗研究进展[J]. 中国药科大学学报, 2020, 51(6): 664-674. DOI: 10.11665/j.issn.1000-5048.20200604
引用本文: 李芳, 辛俊勃, 施秦, 毛成琼. 肿瘤的近红外光免疫治疗研究进展[J]. 中国药科大学学报, 2020, 51(6): 664-674. DOI: 10.11665/j.issn.1000-5048.20200604
LI Fang, XIN Junbo, SHI Qin, MAO Chengqiong. Advances in near infrared photoimmunotherapy of tumor[J]. Journal of China Pharmaceutical University, 2020, 51(6): 664-674. DOI: 10.11665/j.issn.1000-5048.20200604
Citation: LI Fang, XIN Junbo, SHI Qin, MAO Chengqiong. Advances in near infrared photoimmunotherapy of tumor[J]. Journal of China Pharmaceutical University, 2020, 51(6): 664-674. DOI: 10.11665/j.issn.1000-5048.20200604

肿瘤的近红外光免疫治疗研究进展

基金项目: 国家自然科学基金资助项目(No.81803452);江苏省自然科学基金资助项目(No.BK20180273);江苏省青蓝工程资助项目(2019);江苏医药职业学院科技创新团队资助项目(No.20188103)

Advances in near infrared photoimmunotherapy of tumor

Funds: This study was supported by the National Natural Science Foundation of China (No.81803452);the Natural Science Foundation of Jiangsu Province (No.BK20180273);
  • 摘要: 近红外光免疫治疗(NIR-PIT)是一种高选择性分子靶向的肿瘤光学治疗手段。它通过给予水溶性近红外硅酞菁染料IRDye700DX与靶向肿瘤细胞表面抗原的单克隆抗体的结合物,然后局部给予近红外光特异性地诱导肿瘤细胞的快速死亡。基于NIR-PIT良好的临床转化前景,本文从其影响因素、抗肿瘤作用机制、存在问题与对策等方面进行综述,旨在为其研究及临床应用提供参考。
    Abstract: Near infrared photoimmunotherapy (NIR-PIT) is a highly selective molecularly targeted phototherapy for cancer which is based on injecting a conjugate of IRDye700DX,a water-soluble near-infrared silicon-phthalocyanine dye,and a monoclonal antibody that targets an antigen on the cancer cell surface. Subsequent local irradiation of NIR light causes the rapid and specific tumor cell death. Due to the good clinical translation prospects of NIR-PIT,this paper summarizes the influencing factors,antitumor mechanism,main challenges and recent strategies,which may benefit for its research and clinical application.
  • [1] . Nat Med,2011,17(12):1685?1691.
    [2] Maruoka Y,Furusawa A,Okada R,et al. Combined CD44- and CD25-targeted near-infrared photoimmunotherapy selectively kills cancer and regulatory T cells in syngeneic mouse cancer models[J]. Cancer Immunol Res,2020,8(3):345?355.
    [3] Sato K,Nagaya T,Mitsunaga M,et al. Near infrared photoimmunotherapy for lung metastases[J]. Cancer Lett,2015,365(1):112?121.
    [4] Sato K,Nagaya T,Nakamura Y,et al. Near infrared photoimmunotherapy prevents lung cancer metastases in a murine model[J]. Oncotarget,2015,6(23):19747?19758.
    [5] Kobayashi H,Choyke PL. Near-infrared photoimmunotherapy of cancer[J]. Acc Chem Res,2019,52(8):2332?2339.
    [6] Zheng L,Tan W,Zhang J,et al. Combining trastuzumab and cetuximab combats trastuzumab-resistant gastric cancer by effective inhibition of EGFR/ErbB2 heterodimerization and signaling[J]. Cancer Immunol Immunother,2014,63(6):581?586.
    [7] Boeckx C,Blockx L,de Beeck KO,et al. Establishment and characterization of cetuximab resistant head and neck squamous cell carcinoma cell lines:focus on the contribution of the AP-1 transcription factor[J]. Am J Cancer Res,2015,5(6):1921?1938.
    [8] Sano K,Nakajima T,Choyke PL,et al. Markedly enhanced permeability and retention effects induced by photo-immunotherapy of tumors[J]. ACS Nano,2013,7(1):717?724.
    [9] Burley TA,Maczynska J,Shah A,et al. Near-infrared photoimmunotherapy targeting EGFR-shedding new light on glioblastoma treatment[J]. Int J Cancer,2018,142(11):2363?2374.
    [10] Nishimura T,Mitsunaga M,Sawada R,et al. Photoimmunotherapy targeting biliary-pancreatic cancer with humanized anti-TROP2 antibody[J]. Cancer Med,2019,8(18):7781?7792.
    [11] Kiss B,van den Berg NS,Ertsey R,et al. CD47-targeted near-infrared photoimmunotherapy for human bladder cancer[J]. Clin Cancer Res,2019,25(12):3561?3571.
    [12] Wei W,Jiang D,Ehlerding EB,et al. CD146-targeted multimodal image-guided photoimmunotherapy of melanoma[J]. Adv Sci (Weinh),2019,6(9):1801237.
    [13] Isobe Y,Sato K,Nishinaga Y,et al. Near infrared photoimmunotherapy targeting DLL3 for small cell lung cancer[J]. EBioMedicine,2020,52:102632.
    [14] Sato K,Hanaoka H,Watanabe R,et al. Near infrared photoimmunotherapy in the treatment of disseminated peritoneal ovarian cancer[J]. Mol Cancer Ther,2015,14(1):141?150.
    [15] Nagaya T,Okuyama S,Ogata F,et al. Near infrared photoimmunotherapy using a fiber optic diffuser for treating peritoneal gastric cancer dissemination[J]. Gastric Cancer,2019,22(3):463?472.
    [16] Nagaya T,Okuyama S,Ogata F,et al. Near infrared photoimmunotherapy targeting bladder cancer with a canine anti-epidermal growth factor receptor (EGFR) antibody[J]. Oncotarget,2018,9(27):19026?19038.
    [17] Kobayashi H,Griffiths GL,Choyke PL. Near-infrared photoimmunotherapy:photoactivatable antibody-drug conjugates (ADCs) [J]. Bioconjug Chem,2020,31(1):28?36.
    [18] Li F,Zhao Y,Mao C,et al. RGD-modified albumin nanoconjugates for targeted delivery of a porphyrin photosensitizer[J]. Mol Pharm,2017,14(8):2793?2804.
    [19] Perez HL,Cardarelli PM,Deshpande S,et al. Antibody-drug conjugates:current status and future directions[J]. Drug Discov Today,2014,19(7):869?881.
    [20] Amoury M,Bauerschlag D,Zeppernick F,et al. Photoimmunotheranostic agents for triple-negative breast cancer diagnosis and therapy that can be activated on demand[J]. Oncotarget,2016,7(34):54925?54936.
    [21] Okuyama S,Nagaya T,Sato K,et al. Interstitial near-infrared photoimmunotherapy:effective treatment areas and light doses needed for use with fiber optic diffusers[J]. Oncotarget,2018,9(13):11159?11169.
    [22] Nakajima T,Sato K,Hanaoka H,et al. The effects of conjugate and light dose on photo-immunotherapy induced cytotoxicity[J]. BMC Cancer,2014,14:389.
    [23] Sato K,Watanabe R,Hanaoka H,et al. Comparative effectiveness of light emitting diodes (LEDs) and lasers in near infrared photoimmunotherapy[J]. Oncotarget,2016,7(12):14324?14335.
    [24] Peng W,de Bruijn HS,Farrell E,et al. Epidermal growth factor receptor (EGFR) density may not be the only determinant for the efficacy of EGFR-targeted photoimmunotherapy in human head and neck cancer cell lines[J]. Lasers Surg Med,2018,50(5):513?522.
    [25] Nagaya T,Sato K,Harada T,et al. Near infrared photoimmunotherapy targeting EGFR positive triple negative breast cancer:optimizing the conjugate-light regimen[J]. PLoS One,2015,10(8):e0136829.
    [26] Kishimoto S,Bernardo M,Saito K,et al. Evaluation of oxygen dependence on in vitro and in vivo cytotoxicity of photoimmunotherapy using IR-700-antibody conjugates[J]. Free Radic Biol Med,2015,85:24?32.
    [27] van Lith SAM,van den Brand D,Wallbrecher R,et al. The effect of subcellular localization on the efficiency of EGFR-targeted VHH photosensitizer conjugates[J]. Eur J Pharm Biopharm,2018,124:63?72.
    [28] Mao C,Zhao Y,Li F,et al. P-glycoprotein targeted and near-infrared light-guided depletion of chemoresistant tumors[J]. J Control Release,2018,286:289?300.
    [29] Nakamura Y,Nagaya T,Sato K,et al. Alterations of filopodia by near infrared photoimmunotherapy:evaluation with 3D low-coherent quantitative phase microscopy[J]. Biomed Opt Express,2016,7(7):2738?2748.
    [30] Sano K,Mitsunaga M,Nakajima T,et al. Acute cytotoxic effects of photoimmunotherapy assessed by 18F-FDG PET[J]. J Nucl Med,2013,54(5):770?775.
    [31] Ogata F,Nagaya T,Okuyama S,et al. Dynamic changes in the cell membrane on three dimensional low coherent quantitative phase microscopy (3D LC-QPM) after treatment with the near infrared photoimmunotherapy[J]. Oncotarget,2017,8(61):104295?104302.
    [32] Nakajima K,Takakura H,Shimizu Y,et al. Changes in plasma membrane damage inducing cell death after treatment with near-infrared photoimmunotherapy[J]. Cancer Sci,2018,109(9):2889?2896.
    [33] Sato K,Watanabe R,Hanaoka H,et al. Photoimmunotherapy:comparative effectiveness of two monoclonal antibodies targeting the epidermal growth factor receptor[J]. Mol Oncol,2014,8(3):620?632.
    [34] Sato K,Choyke PL,Kobayashi H. Photoimmunotherapy of gastric cancer peritoneal carcinomatosis in a mouse model[J]. PLoS One,2014,9(11):e113276.
    [35] Kishimoto S,Oshima N,Yamamoto K,et al. Molecular imaging of tumor photoimmunotherapy:evidence of photosensitized tumor necrosis and hemodynamic changes[J]. Free Radic Biol Med,2018,116:1?10.
    [36] Sato K,Ando K,Okuyama S,et al. Photoinduced ligand release from a silicon phthalocyanine dye conjugated with monoclonal antibodies:a mechanism of cancer cell cytotoxicity after near-infrared photoimmunotherapy[J]. ACS Cent Sci,2018,4(11):1559?1569.
    [37] Dong H,Wu R,Liu J,et al. Advances in cancer photodynamic therapy[J]. J China Pharm Univ(中国药科大学学报),2016,47(4):377?387.
    [38] Isoda Y,Piao W,Taguchi E,et al. Development and evaluation of a novel antibody-photon absorber conjugate reveals the possibility of photoimmunotherapy-induced vascular occlusion during treatment in vivo[J]. Oncotarget,2018,9(59):31422?31431.
    [39] Nagaya T,Okuyama S,Ogata F,et al. Endoscopic near infrared photoimmunotherapy using a fiber optic diffuser for peritoneal dissemination of gastric cancer[J]. Cancer Sci,2018,109(6):1902?1908.
    [40] Maruoka Y,Nagaya T,Sato K,et al. Near infrared photoimmunotherapy with combined exposure of external and interstitial light sources[J]. Mol Pharm,2018,15(9):3634?3641.
    [41] Nakajima K,Kimura T,Takakura H,et al. Implantable wireless powered light emitting diode (LED) for near-infrared photoimmunotherapy:device development and experimental assessment in vitro and in vivo[J]. Oncotarget,2018,9(28):20048?20057.
    [42] Mitsunaga M,Nakajima T,Sano K,et al. Near-infrared theranostic photoimmunotherapy (PIT):repeated exposure of light enhances the effect of immunoconjugate[J]. Bioconjug Chem,2012,23(3):604?609.
    [43] Mitsunaga M,Nakajima T,Sano K,et al. Immediate in vivo target-specific cancer cell death after near infrared photoimmunotherapy[J]. BMC Cancer,2012,12:345.
    [44] Okuyama S,Nagaya T,Ogata F,et al. Avoiding thermal injury during near-infrared photoimmunotherapy (NIR-PIT):the importance of NIR light power density[J]. Oncotarget,2017,8(68):113194?113201.
    [45] Nakajima T,Sano K,Mitsunaga M,et al. Real-time monitoring of in vivo acute necrotic cancer cell death induced by near infrared photoimmunotherapy using fluorescence lifetime imaging[J]. Cancer Res,2012,72(18):4622?4628.
    [46] Maruoka Y,Nagaya T,Nakamura Y,et al. Evaluation of early therapeutic effects after near-infrared photoimmunotherapy (NIR-PIT) using luciferase-luciferin photon-counting and fluorescence imaging[J]. Mol Pharm,2017,14(12):4628?4635.
  • 期刊类型引用(4)

    1. 宋永真,李雅静,张振凌,王胜超. 曼地亚红豆杉酒炙工艺及质量标准研究. 中医学报. 2024(05): 1068-1075 . 百度学术
    2. 剡槿熙,臧明伍,刘贺,徐晨晨,史宇璇,白京,赵燕,郝静怡,张亚茹. 二萜类化合物在肉类食品保鲜防腐中的应用研究进展. 食品科学. 2024(13): 282-291 . 百度学术
    3. 王楠楠,蔡婷婷,童晔玲,刘霞,朱婉萍,江石平,赵桂芝. 基于NF-κB信号通路的HTRF法筛选红豆杉中抗气道炎症有效活性成分研究. 浙江中医杂志. 2023(08): 553-556 . 百度学术
    4. 傅贵江. 杉木人工林抚育间伐对套种南方红豆杉的影响. 武夷科学. 2022(01): 39-43 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  433
  • HTML全文浏览量:  9
  • PDF下载量:  1021
  • 被引次数: 9
出版历程
  • 收稿日期:  2020-04-19
  • 修回日期:  2020-09-29
  • 刊出日期:  2020-12-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭