• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

甘草甜素对糖尿病视网膜病变的神经保护作用

蒋晓梅, 刘翀

蒋晓梅, 刘翀. 甘草甜素对糖尿病视网膜病变的神经保护作用[J]. 中国药科大学学报, 2020, 51(6): 711-717. DOI: 10.11665/j.issn.1000-5048.20200610
引用本文: 蒋晓梅, 刘翀. 甘草甜素对糖尿病视网膜病变的神经保护作用[J]. 中国药科大学学报, 2020, 51(6): 711-717. DOI: 10.11665/j.issn.1000-5048.20200610
JIANG Xiaomei, LIU Chong. Neuroprotective effect of glycyrrhizin on diabetic retinopathy[J]. Journal of China Pharmaceutical University, 2020, 51(6): 711-717. DOI: 10.11665/j.issn.1000-5048.20200610
Citation: JIANG Xiaomei, LIU Chong. Neuroprotective effect of glycyrrhizin on diabetic retinopathy[J]. Journal of China Pharmaceutical University, 2020, 51(6): 711-717. DOI: 10.11665/j.issn.1000-5048.20200610

甘草甜素对糖尿病视网膜病变的神经保护作用

Neuroprotective effect of glycyrrhizin on diabetic retinopathy

  • 摘要: 为探索甘草甜素(glycyrrhizin,GL)对糖尿病视网膜病变(diabetic retinopathy,DR)的潜在抗炎作用和视网膜神经保护作用,21只雄性C57BL/6小鼠随机分为对照组(Control)、模型组(Model)、甘草甜素(GL)组。采用STZ腹腔注射建立糖尿病小鼠模型。GL组在建模后用GL(150 mg/kg/d)灌胃治疗6周。视网膜组织切片,石蜡包埋,用苏木精-伊红(HE)进行形态学检查。免疫组化检测组织GLUT1、GFAP和GAP43表达,RT-PCR检测视网膜炎症和凋亡介质的表达(TNF-α、IL6、iNOS、NF-κB和Tp53)。结果显示,糖尿病小鼠视网膜发育紊乱,视网膜层衰弱,胶质细胞增生标志物GFAP表达上调,神经元可塑性标志物GAP43表达下调;糖尿病小鼠视网膜上的NF-κB、TNF-α、IL6、iNOS和Tp53转录增加。GL组减轻了糖尿病小鼠视网膜上的GLUT1表达的下调程度,视网膜炎症消除,且结构有所改善。上述结果提示GL可能对糖尿病患者具有神经保护和抗炎作用,但其对DR患者是否有效安全需要进一步的临床研究证实。
    Abstract: To explore the potential anti-inflammatory effects and retinal neuroprotective effects of glycyrrhizin (GL) on diabetic retinopathy (DR),twenty-one male C57BL/6 mice were randomly divided into control group,model group and glycyrrhizin (GL) group. The diabetic mice model was established by intraperitoneal injection of STZ. The GL group was treated with GL (150 mg/kg/d) by gavage for 6 weeks after modeling. Retinal tissue sections were paraffin-embedded and morphological examinated with hematoxylin-eosin (HE). Immunohistochemistry was used to detect the expression of GLUT1,GFAP and GAP43. RT-PCR was adopted to detect retinal inflammation and expression of apoptotic mediators (TNF-α,IL6,iNOS,NF-κB and Tp53). The results showed that the diabetic mice developed retinal disorders and retinal degeneration. The expression of glial cell proliferation marker GFAP was up-regulated,while the expression of neuronal plasticity marker GAP43 was down-regulated;NF-κB,TNF-α,IL6,iNOS and Tp53 transcription in the retina of diabetic mice increased. In the GL group,the degree of down-regulation of GLUT1 expression in the retina of diabetic mice was reduced,retinal inflammation was eliminated and the structure was improved. The above results suggested that GL may be a potential neuroprotective agent for diabetic patients and has anti-inflammatory effects,but its efficacy and safety in DR patients requires further clinical studies.
  • [1] . Recent Advs Ophthalmol (眼科新进展),2018,38(12):91?96.
    [2] Gubitosi-Klug RA. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years:summary and future directions[J]. Diabetes Care,2014,37(1):44?49.
    [3] Morales-Sosa M,Orozco-Suarez S,Vega-Garcia A,et al. Immunomodulatory effect of Celecoxib on HMGB1/TLR4 pathway in a recurrent seizures model in immature rats[J]. Pharmacol Biochem Behav,2018,170(5):79?86.
    [4] Wang L,Li YJ,Zhang b,et al. Protective effects and mechanism of glycyrrhizin on status epilepticus rats[J]. J Apoplexy Nerv Dis (中风与神经疾病杂志),2017,34(10):897?901.
    [5] Liu L,Jiang Y,Steinle JJ. Inhibition of HMGB1 protects the retina from ischemia-reperfusion,as well as reduces insulin resistance proteins[J]. PLoS One,2017,12(5):e0178236.
    [6] Nasiry D,Khalatbary AR,Ahmadvand H. Therapeutic potential of Juglans regia L. leaf extract against diabetic retinopathy in rat[J]. Iran J Basic Med Sci,2017,20(11):1275?1281.
    [7] Kumagai AK,Glasgow BJ,Pardridge WM. GLUT1 glucose transporter expression in the diabetic and nondiabetic human eye[J]. Invest Ophth Vis Sci,1994,35(6):2887?2894.
    [8] Kawasaki R,Konta T,Nishida K. Lipid-lowering medication is associated with decreased risk of diabetic retinopathy and the need for treatment in patients with type 2 diabetes:a real-world observational analysis of a health claims database[J]. Diabetes Obes Metab,2018,20(10):2351?2360.
    [9] Elmasry K,Ibrahim AS,Saleh H,et al. Role of endoplasmic reticulum stress in 12/15-lipoxygenase-induced retinal microvascular dysfunction in a mouse model of diabetic retinopathy[J]. Diabetologia,2018,61(5):1220?1232.
    [10] Bai Y,He Y,Yang LX. Mechanism of traditional Chinese medicine for promoting blood circulation and removing blood stasis in treating diabetic nephropathy[J]. Chin J Exp Tradit Med Form (中国实验方剂学杂志),2018,24(23):200?206.
    [11] Dehdashtian E,Mehrzadi S,Yousefi B,et al. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy,inflammation and oxidative stress[J]. Life Sci,2017,193(9):20?33.
    [12] You ZP,Zhang YL,Shi K,et al. Suppression of diabetic retinopathy with GLUT1 siRNA[J]. Sci Rep,2017,7(1):7437?7447.
    [13] Thorens B,Mueckler M. Glucose transporters in the 21st century[J]. Am J Physiol Endocrinol Metab,2010,298(2):E141?E145.
    [14] Jianwei Z,Lingling W,Shucai L,et al. Expression changes of growth-associated protein-43 (GAP-43) and mitogen-activated protein kinase phosphatase-1 (MKP-1) and in hippocampus of streptozotocin-induced diabetic cognitive impairment rats[J]. Exp Neurol,2007,206(2):201?208.
    [15] Li ZW,Liang HM,Li Z,et al. The protective effect of rosiglitazone on diabetic retinal Müller cells and its effects on the expression of glial fibrillary acidic protein (GFAP) and inflammatory factors in Müller cells[J]. Recent Advs Ophthalmol(眼科新进展),2018,38(9):825?828.
    [16] Liu L, Jiang Y, Steinle JJ. Glycyrrhizin protects the diabetic retina against permeability,neuronal,and vascular damage through anti-Inflammatory mechanisms[J]. J Clin Med,2019,8(7):957?963.
    [17] Chen JH. Neuroprotective effect and the mechanism of glycyrrhizin on hippocampal in infant rats with temporal lobe epilepsy(甘草甜素对幼鼠颞叶癫痫海马神经元的保护作用及其机制研究)[D].Zhengzhou University(郑州大学),2017.
    [18] Holm TH,Dina D,Trevor O. Microglia are required for astroglial Toll-like receptor 4 response and for optimal TLR2 and TLR3 response[J]. Glia,2012,60(4):630?638.
  • 期刊类型引用(10)

    1. 刘梦伟,刘超,范素锦,张梓行,吴进,张忠勇,王元松. 中药治疗糖尿病视网膜病变的研究进展. 中国中医药现代远程教育. 2024(02): 140-142 . 百度学术
    2. 郭航,张晓蕾. 基于数据挖掘和网络药理学的国家专利复方治疗糖尿病视网膜病变作用机制分析. 亚太传统医药. 2024(11): 156-164 . 百度学术
    3. 刘通,林玮,冯萌,杨依,刘婷婷,张敏. 基于网络药理学分析小檗碱在免疫微环境中对糖尿病视网膜病变的作用及实验验证. 山东大学耳鼻喉眼学报. 2023(01): 94-104 . 百度学术
    4. 经加吻,许奇,阮诺冰,汪四海,方朝晖. 基于网络药理学方法和分子对接技术探讨丹蛭降糖胶囊治疗糖尿病视网膜病变的作用机制. 山西中医药大学学报. 2023(05): 555-563 . 百度学术
    5. 石颖,陈子扬,叶照达,柯发杰,胡艳红,陈胜. OCTA定量分析补阳还五汤加味对非增殖型糖尿病视网膜病变患者视盘血流的影响. 国际眼科杂志. 2023(12): 2040-2045 . 百度学术
    6. 韩维维,方东军,李陆军,刘岩. 甘草化学成分及生物活性研究进展. 化学工程师. 2022(02): 56-58+67 . 百度学术
    7. 周文,余飞浩,李燕珍,熊伟夫,陈家伟,刘端勇. 基于数据挖掘技术探讨龚廷贤治疗消渴病证的组方用药规律. 中医临床研究. 2022(07): 15-19 . 百度学术
    8. 黄丹. 内障症主方联合电针治疗视网膜静脉周围炎(气滞血瘀型)临床观察. 光明中医. 2022(21): 3910-3913 . 百度学术
    9. 刘梦伟,鲍新颖,王烁,王元松,王晓蕴,张忠勇. 中医药治疗糖尿病视网膜病变的研究进展. 中医临床研究. 2022(36): 45-47 . 百度学术
    10. 陈瑶,张颖,周庆兵,徐凤芹. 基于网络药理学方法探讨益气活血方治疗糖尿病合并动脉粥样硬化的作用机制. 中西医结合心脑血管病杂志. 2021(09): 1451-1459 . 百度学术

    其他类型引用(12)

计量
  • 文章访问数:  199
  • HTML全文浏览量:  9
  • PDF下载量:  640
  • 被引次数: 22
出版历程
  • 收稿日期:  2020-01-19
  • 修回日期:  2020-07-08
  • 刊出日期:  2020-12-24

目录

    /

    返回文章
    返回